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Diffusion models

• Data distribution: pdata = p0.

• Forward process: dXt = −Xt dt +
√

2 dBt , Xt ∼ pt .

• Reverse process: dX←t = {X←t + 2∇ log pT−t (X←t )} dt +
√

2 dBt .

Training
• Learn score functions via the score matching objective:
∇ log pt = argminst :Rd→Rd Ex0∼p0 SMt (st , x0), where

SMt (st , x0)
B Ext∼qOU

t |0 ( · |x0 ) [∥st (xt)∥
2 + 2 ⟨st (xt),∇ log qOU

t |0 (xt | x0)⟩] .

• Empirical version: ŝt = argminst ∈𝒮t
n−1 ∑n

i=1 SMt (st , x (i)0 ).
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Sampling from diffusion models

Generation
• Once we have estimated scores {̂st}t∈[0,T ] , we discretize the

reverse process: dX̂←t = {X̂←t + 2 ŝt− (X̂←t− )} dt +
√

2 dBt , where
X̂←0 ∼ p̂T = N(0, Id ) and X̂←T ∼ p̂0.

Theorem: Denoising diffusion models (DDPM) achieve
TV(p̂0, p0) ≤ 𝜀∗ in poly(d, L, 1/𝜀∗) steps, where:

• ∥∇ log pt ∥Lip ≤ L and Ex0∼p0 [∥x0∥2] ≤ poly(d).

•
∫ T

0 ∥̂st− − ∇ log pt− ∥
2
L2 (pt )

dt ≤ 𝜀2
∗ .

The Lipschitz score assumption is removed by stopping
early at time 𝜏 , with complexity poly(d, log(1/𝜏), 1/𝜀∗).
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Sampling from diffusion models

Theorem: Denoising diffusion models (DDPM) achieve
TV(p̂0, p0) ≤ 𝜀∗ in poly(d, L, 1/𝜀∗) steps, where:

• ∥∇ log pt ∥Lip ≤ L and Ex0∼p0 [∥x0∥2] ≤ poly(d).

•
∫ T

0 ∥̂st− − ∇ log pt− ∥
2
L2 (pt )

dt ≤ 𝜀2
∗ .

The Lipschitz score assumption is removed by stopping early
at time 𝜏 , with complexity poly(d, log(1/𝜏), 1/𝜀∗).

• Sitan Chen, S.C., Jerry Li, Yuanzhi Li, Adil Salim, Anru Zhang, Sampling is as
easy as learning the score. ICLR 2023.

• [Concurrent] Holden Lee, Jianfeng Lu, Yixin Tan, Convergence of score-based
generative modeling for general data distributions. ALT 2023.

• Many, many follow-up works. . .

4



Which of these tasks make sense?

• Given access to evaluations of the likelihood of p0, output a
sample from p0.

✓ (standard MCMC setup)

• Given samples from p0, learn the score functions along the
diffusion. ✓ (statistical theory for score matching)

• Given score functions along the diffusion, output a new sample
from p0. ✓ (see previous theorem)

• Given samples from p0, generate new samples from p0. NO,
this is information-theoretically impossible.

• Given samples from p0, “learn a sampler” for p0. ✓ (yes, we
shall see that this makes sense)
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Distribution learning

What does it mean to “learn” a family 𝒫 of distributions, given

samples X (1) , . . . , X (n) i.i.d.∼ p ∈ 𝒫?

Depends on the representation.

• (Parameter Recovery) If 𝒫 = {p𝜃 : 𝜃 ∈ Θ}, the goal is to output
an estimate 𝜃 of the parameter.

• (Density Estimation) The goal is to output an evaluator, i.e., a
function p̂ : Rd → R such that p̂(x) is a good estimator of the
density p(x) at x .

• (Learning a Sampler) The goal is to output a generator, i.e., a
function 𝒢 : [0, 1] → Rd which takes a random seed
U ∼ uniform( [0, 1]), such that law(𝒢(U) | X ) ≈ p.
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The distinction is computational

Remark: Density estimation and learning a sampler are equivalent
from the lens of information theory, but not from the lens of
computational complexity.

• E.g., minimax lower bounds in statistics apply to both models.

• This is not true for computational lower bounds.
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Reinterpreting the DDPM result as distribution learning

Theorem (informal): Let 𝒫 be nearly any (“realistic”) family
of distributions. Then, the sample complexity of learning a
sampler for 𝒫 is at most the sample complexity of learning the
score functions along DDPM for 𝒫.

Moreover, the computational complexity is at most a poly-
nomial factor worse.

Learning a sampler is as easy as learning the scores.
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Examples of learning a sampler via DDPM

This is a growing literature!

• [Oko, Akiyama, Suzuki ’23; Dou, Kotekal, Xu, Zhou ’24] Score matching
along DDPM yields minimax optimal samplers for Besov and
Hölder classes of densities.

• [Chen, Kontonis, Shah ’24; Gatmiry, Kelner, Lee ’24] Score matching
along DDPM yields new algorithmic results for learning
mixtures of Gaussians (in the sense of learning a sampler).

• . . .
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Our new results
[S.C., Alkis Kalavasis, Anay Mehrotra, Omar Montasser, DDPM score matching and distribution
learning. ’25]
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Outline

• A key identity for the likelihood

• Implications for parameter estimation

• Implications for density estimation

• Implications for computational lower bounds
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Likelihood identity

Recall:

• ∇ log pt = argminst :Rd→Rd Ex0∼p0 SMt (st , x0).
• ŝt = argminst ∈𝒮t

n−1 ∑n
i=1 SMt (st , x (i)0 ).

Lemma:

− log p0(x0) =
∫ T

0
SMt (∇ log pt , x0) dt + Cd,T + O(e−2T ) ,

where Cd,T = d
2 log(2πe (1 − e−2T )).

We do not claim novelty: see, e.g., [Song, Durkan, Murray, Ermon ’21; Chen, Liu,

Theodorou ’22; Li, Yan ’24; . . . ].
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• ŝt = argminst ∈𝒮t

n−1 ∑n
i=1 SMt (st , x (i)0 ).

Lemma:

− log p0(x0) =
∫ T

0
SMt (∇ log pt , x0) dt + Cd,T + O(e−2T ) ,

where Cd,T = d
2 log(2πe (1 − e−2T )).

We do not claim novelty: see, e.g., [Song, Durkan, Murray, Ermon ’21; Chen, Liu,

Theodorou ’22; Li, Yan ’24; . . . ].

12



Parameter estimation
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Parameter estimation

Setting: 𝒫 = {p𝜃 : 𝜃 ∈ Θ}, data x (1)0 , . . . , x (n)0
i.i.d.∼ p𝜃★ .

Prior works
• [Koehler, Heckett, Risteski ’23] studied the implicit score matching

(ISM) estimator:

𝜃 ISM
n B argmin𝜃 ∈Θ

1
n

∑n
i=1{∥∇ log p𝜃 (x

(i)
0 )∥2 + 2Δ log p𝜃 (x (i)0 )}.

They showed that
√
n (𝜃 ISM

n − 𝜃★) d−→ N(0, ΣISM).
⊵ When 𝒫 satisfies a “restricted Poincaré inequality”, ΣISM can be

bounded in terms of ΣMLE = I(𝜃★)−1.

⊵ In general, ΣISM ≫ ΣMLE (provably inefficient!).
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Parameter estimation

Prior works
• Since a Poincaré inequality is classically related to mixing times

for Markov chains, their main message was:

rapid mixing ↭ statistical efficiency

• For Gaussian mixtures, [Shah, Chen, Klivans ’23; Qin, Risteski ’24]

established polynomial sample complexity via score matching
along other diffusions.
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DDPM score matching and parameter estimation

To estimate 𝜃★, let us minimize the DDPM score matching loss:

𝜃 DDPM
n B argmin

𝜃 ∈Θ

1
n

n∑︁
i=1

∫ T

0
SMt (∇ log p𝜃,t , x (i)0 ) dt

By the likelihood identity:

argmin
𝜃 ∈Θ

{
−1
n

n∑︁
i=1

log p𝜃 (x (i)0 )
}

= argmin
𝜃 ∈Θ

{ 1
n

n∑︁
i=1

∫ T

0
SMt (∇ log p𝜃,t , x (i)0 ) dt + Cd,T + O(e−2T )

}
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DDPM score matching achieves full efficiency

Theorem [CKMM ’25]: Under standard conditions, provided
that T = Tn satisfies Tn − 1

2 log n→∞,

√
n (𝜃 DDPM

n − 𝜃★) d−→ N(0, ΣMLE) .

Parameter estimation is as easy as (properly) learning scores.
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Density estimation
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DDPM score matching and density estimation

Likelihood identity:

− log p0(x0) =
∫ T

0
SMt (∇ log pt , x0) dt + Cd,T + O(e−2T ) .

An obvious idea is to estimate − log p0(x0) by outputting

− log p̂0(x0) B
∫ T

0
SMt (̂st , x0) dt + Cd,T .
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Reduction framework

Theorem [CKMM ’25]: The DDPM density estimator achieves
Ex0∼p0 |log(p̂(x0)/p(x0)) | ≤ 𝜀 in poly(d, L, 1/𝜀) time, where:

• ∥∇ log p0∥Lip ≤ L and Ex0∼p0 [∥x0∥2] ≤ poly(d).

•
∫ T

0 ∥̂st − ∇ log pt ∥
2
L2 (pt )

dt ≤ Õ(𝜀2/d).

The Lipschitz score assumption is removed by stopping early
at time 𝜏 , with complexity poly(d, 1/𝜏, 1/𝜀).

Remarks: p̂ ≥ 0, but
∫
p̂ ≠ 1.

It implies that on 99% of the space, e−𝜀p ≤ p̂ ≤ e𝜀p.
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• ∥∇ log p0∥Lip ≤ L and Ex0∼p0 [∥x0∥2] ≤ poly(d).

•
∫ T

0 ∥̂st − ∇ log pt ∥
2
L2 (pt )

dt ≤ Õ(𝜀2/d).
The Lipschitz score assumption is removed by stopping early
at time 𝜏 , with complexity poly(d, 1/𝜏, 1/𝜀).

PAC density estimation is as easy as learning the scores.
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Example: application to the Hölder class

Let ℋs (C, L) consist of Hölder densities on [−1, 1]. (Here,
s = smoothness, C = lower bd. on density, L = size of Hölder ball.)

[Dou, Kotekal, Xu, Zhou ’24] obtained optimal rates of score estimation for
ℋs (C, L), leading to a minimax optimal sampler.

Theorem [CKMM ’25]: There is a density estimator based on
DDPM score matching such that for the L1 risk ℛ(p̂, p) B∫
[−1,1] E |̂p(x0) − p(x0) |, the estimator achieves the minimax

risk n−2s/(2s+1) over ℋs (C, L) up to a
√︁
log n factor.

See paper for a Gaussian mixture example.
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Computational lower bounds
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Computational lower bounds

• There are various frameworks for proving hardness of density
estimation. Do they lead to hardness of score estimation?

• Some frameworks, such as SQ, are information-theoretic, so
they apply to density estimators and generators.

• What about lower bounds from computational complexity?

⊵ Cryptographic hardness: Solving a task is as hard as
breaking a cryptosystem.

⊵ Recently, cryptographic hardness has been proven for some
density estimation tasks.

⊵ Cryptographic hardness results for learning a sampler
remain elusive.
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Cryptographic hardness for learning score functions

Recently, [Song ’24] proved crypto hardness of learning score functions
for Gaussian mixtures via a tailored argument.

Our reduction framework yields a general blueprint:

To prove crypto hardness for learning the scores of a family 𝒫:

1. Check that 𝒫 satisfies the conditions of our reduction.

2. Prove that PAC density estimation over 𝒫 is crypto hard.

Learning the scores is as hard as PAC density estimation.

25



Cryptographic hardness for learning score functions

Recently, [Song ’24] proved crypto hardness of learning score functions
for Gaussian mixtures via a tailored argument.

Our reduction framework yields a general blueprint:

To prove crypto hardness for learning the scores of a family 𝒫:

1. Check that 𝒫 satisfies the conditions of our reduction.

2. Prove that PAC density estimation over 𝒫 is crypto hard.

Learning the scores is as hard as PAC density estimation.

25



Cryptographic hardness for learning score functions

Recently, [Song ’24] proved crypto hardness of learning score functions
for Gaussian mixtures via a tailored argument.

Our reduction framework yields a general blueprint:

To prove crypto hardness for learning the scores of a family 𝒫:

1. Check that 𝒫 satisfies the conditions of our reduction.

2. Prove that PAC density estimation over 𝒫 is crypto hard.

Learning the scores is as hard as PAC density estimation.

25



Application to Gaussian mixtures

Corollary [CKMM ’25]: For any 𝜀 > 0, it is cryptographically
hard to learn the score functions of mixtures of Gaussians with
up to d𝜀 components.

Reduction chain for experts:

• score estimation← PAC density estimation (our framework)

• ← CLWE (following [Bruna, Regev, Song, Tang ’21])

• ← LWE (following [Gupte, Vafa, Vaikuntanathan ’22])

• ← lattice problems [Regev ’09]

• ← post-quantum cryptography.
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Summary

Thank you for your attention!
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