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Diffusion models

e Data distribution:  pgata = po-
e Forward process: dX;=—X;dt+ V2dB;, X ~ Pt.
e Reverse process: dX;” ={X;” +2Vlogpr_(X )} dt + V2 dB,.
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Training
e Learn score functions via the score matching objective:
Vlog pr = arg ming .ga_,ga Bxy~p, SM:(st, x0), where
SM¢(st, x0)
= By g2V LISt )11 + 2 ¢t (x0), ¥ log g (xe | 30))].

0

e Empirical version: 5, = argming g n™ " X7 SMy(sy, xé')).
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Sampling from diffusion models

Generation

e Once we have estimated scores {s;}c[o 11, we discretize the
reverse process: dy(t‘_ = {f(;— + 25 (y(t‘f)} dt + V2dB;, where
Xy~ ~pr =N(0, Ig) and X7~ ~ Ppo.
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Sampling from diffusion models

Generation
e Once we have estimated scores {s;}c[o 11, we discretize the
reverse process: dy(;_ = {f(;— + 25 (y(t‘f)} dt + V2dB;, where
Xy~ ~pr =N(0, Ig) and X7~ ~ Ppo.

Theorem: Denoising diffusion models (DDPM) achieve
TV(po, po) < & in poly(d, L, 1/¢,) steps, where:

o [IVlog prlluip < L and By [Ix0ll?] < poly(d).
. fo IIs: Vlogpt_lle( 2 dt < eZ.

The Lipschitz score assumption is removed by stopping
early at time 7, with complexity poly(d, log(1/7), 1/¢.).
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Sampling from diffusion models

Theorem: Denoising diffusion models (DDPM) achieve
TV(po, po) < & in poly(d, L, 1/¢,) steps, where:

o [[ViogpillLip < L and Ex,p, [lIx0l|*] < poly(d).
T~
o /0 IIs¢ V|0gPt_||L2( ) dt < &

The Lipschitz score assumption is removed by stopping early
at time 7, with complexity poly(d, log(1/7), 1/¢.).

e Sitan Chen, S.C., Jerry Li, Yuanzhi Li, Adil Salim, Anru Zhang, Sampling is as
easy as learning the score. ICLR 2023.

e [Concurrent] Holden Lee, Jianfeng Lu, Yixin Tan, Convergence of score-based
Zenerative modeling for general data distributions. ALT 2023.

e Many, many follow-up works...
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Which of these tasks make sense?

e Given access to evaluations of the likelihood of py, output a
sample from py.
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Distribution learning

What does it mean to “learn” a family & of distributions, given
samples X1 ... x(" Hid p € P?
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Distribution learning

What does it mean to “learn” a family & of distributions, given
samples X1 ... x(" - p € 9? Depends on the representation.
o (Parameter Recovery) If & = {pg : 0 € O}, the goal is to output
an estimate 6 of the parameter.

e (Density Estimation) The goal is to output an evaluator, i.e., a
function p : RY — R such that p(x) is a good estimator of the
density p(x) at x.

e (Learning a Sampler) The goal is to output a generator, i.e., a
function € : [0, 1] — RY which takes a random seed
U ~ uniform([0, 1]), such that law(Z(U) | X) = p.
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The distinction is computational

Remark: Density estimation and learning a sampler are equivalent
from the lens of information theory, but not from the lens of
computational complexity.
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The distinction is computational

Remark: Density estimation and learning a sampler are equivalent
from the lens of information theory, but not from the lens of
computational complexity.

e E.g., minimax lower bounds in statistics apply to both models.

e This is not true for computational lower bounds.
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Reinterpreting the DDPM result as distribution learning

Theorem (informal): Let & be nearly any (“realistic”) family
of distributions. Then, the sample complexity of learning a
sampler for & is at most the sample complexity of learning the
score functions along DDPM for 2.

Moreover, the computational complexity is at most a poly-
nomial factor worse.
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Reinterpreting the DDPM result as distribution learning

Theorem (informal): Let & be nearly any (“realistic”) family
of distributions. Then, the sample complexity of learning a
sampler for & is at most the sample complexity of learning the
score functions along DDPM for &.

Moreover, the computational complexity is at most a poly-
nomial factor worse.

Learning a sampler is as easy as learning the scores.
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Examples of learning a sampler via DDPM

This is a growing literature!
® [Oko, Akiyama, Suzuki "23; Dou, Kotekal, Xu, Zhou *24] Score matching
along DDPM yields minimax optimal samplers for Besov and
Holder classes of densities.
® [Chen, Kontonis, Shah "24; Gatmiry, Kelner, Lee *24] Score matching
along DDPM yields new algorithmic results for learning
mixtures of Gaussians (in the sense of learning a sampler).
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Our new results

[S.C., Alkis Kalavasis, Anay Mehrotra, Omar Montasser, DDPM score matching and distribution
learning. *25]

( Score estimation )HW—(DDPM score estimation)

Prior works This work This work

( Generation ) (PAC density estimatiorD (Parameter estimation)
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Outline

A key identity for the likelihood

Implications for parameter estimation

Implications for density estimation

Implications for computational lower bounds
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Likelihood identity

Recall:
e Vlog p; = arg ming pa_,pd Ex;~p, SM¢ (1, X0)-

= _ : -1 y'n (i)
® s, =argming g n i1 SM¢ (s, x,").

12 Yale



Likelihood identity

Recall:
e Vlog p; = arg ming pa_,pd Ex;~p, SM¢ (1, X0)-

= _ : -1 y'n (i)
e sy =argming g n i1 SM¢ (s, x,").

Lemma:

.
—log po(x0) = / SM¢(V log pt, xo) dt + Cy. 1 + o(e?"),
0

where Cy 1 = ‘5’ log(2me (1 —e~27)).

We do not claim novelty: see, e.g., [Song, Durkan, Murray, Ermon *21; Chen, Liu,
Theodorou ’22; Li, Yan *24; ...].
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Setting: & = {py : 0 € O}, data x“),...,xé”) e Pox.
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Parameter estimation

() iid

Setting: & = {py : 0 € O}, data xé”,..., o~ Ppox.

Prior works
® [Koehler, Heckett, Risteski '23] studied the implicit score matching
(ISM) estimator:
0,5M = argmingeo 2 X1, {[IV log po(x;”) 12 + 2 A log po(x”)}.

They showed that \/ﬁ(@,,'w - 6%) LN N(0, 2!SM),
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Prior works
® [Koehler, Heckett, Risteski '23] studied the implicit score matching
(ISM) estimator:
0)M = argmingeg 2 X1, {[IV log po(xy”) 12 +2 A log py(x;”) ).

-~ d
They showed that v/n (6,°M — 6*) — N(0, 2'5M),
> When & satisfies a “restricted Poincaré inequality”, 2'*M can be
bounded in terms of SM'E = 7(6%)".
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Parameter estimation

Setting: & = {py : 0 € O}, data xé”,..., é”) Hid Po*-

Prior works
® [Koehler, Heckett, Risteski '23] studied the implicit score matching
(ISN\) estimator:
0,5M = argmingeo 2 X1, {[IV log po(x;”) 12 + 2 A log po(x”)}.

-~ d
They showed that v/n (6,°M — 6*) — N(0, 2'5M),
> When & satisfies a “restricted Poincaré inequality”, 2'*M can be
bounded in terms of SM'E = 7(6%)".

In general, X'5M > SMLE (provably inefficient!).

\%

Yale
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Parameter estimation

Prior works

e Since a Poincaré inequality is classically related to mixing times
for Markov chains, their main message was:

rapid mixing > statistical efficiency

15 Yale



Parameter estimation

Prior works

e Since a Poincaré inequality is classically related to mixing times
for Markov chains, their main message was:

rapid mixing > statistical efficiency

e For Gaussian mixtures, [Shah, Chen, Klivans ’23; Qin, Risteski *24]
established polynomial sample complexity via score matching
along other diffusions.
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DDPM score matching and parameter estimation

To estimate 0*, let us minimize the DDPM score matching loss:

_ el "
6,°°PM = arg min — Z/ SM¢(V log pe.s, x(g ) dt
pco N i=1 Y0

16 Yale



DDPM score matching and parameter estimation

To estimate 0*, let us minimize the DDPM score matching loss:

_ el "
6,°°PM = arg min — Z / SM¢(V log pe.s, x(g ) dt
pco N i=1 Y0

By the likelihood identity:

WA (0
arg mln{—— log po(x )}
0e® n ,Z; 0

1 [T :
= arg min{'—7 Z / SM¢(V log po.+, Xé’)) dt+Cyr+ O(e—zr)}
0e® - Y0

16 Yale



DDPM score matching achieves full efficiency

17

Theorem [CKMM °25]: Under standard conditions, provided
that T = T, satisfies T,, — % log n — oo,

\/E(é‘nDDPM — 6% 4 N(0, SMLEY
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DDPM score matching achieves full efficiency

17

Theorem [CKMM °25]: Under standard conditions, provided
that T = T, satisfies T,, — % log n — oo,

\/E(é‘nDDPM — 6% 4 N(0, SMLEY

Parameter estimation is as easy as (properly) learning scores.
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Density estimation
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DDPM score matching and density estimation

Likelihood identity:

;
—log po(x0) = / SM¢(V log pt, xo) dt + Cy. 1 + 0(e27).
0
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DDPM score matching and density estimation

Likelihood identity:

;
—log po(x0) = / SM¢(V log pt, xo) dt + Cy. 1 + 0(e27).
0

An obvious idea is to estimate — log po(xo) by outputting

;
—log po(x0) ::/ SM¢(st, x0) dt + Cy 1.
0

19 Yale



Reduction framework

20

Theorem [CKMM *25]: The DDPM density estimator achieves
Exo~po 1108(P(x0)/p(x0))| < € in poly(d, L, 1/¢) time, where:

o [[Viog pollLip < L and Exy-p, [lIxolI*] < poly(d).
T e =
o Jo IS = Viogpell3, ,, dt < O(%/d).
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Reduction framework

Theorem [CKMM *25]: The DDPM density estimator achieves
Exo~po[108(P(x0)/p(x0))| < € in poly(d, L, 1/¢) time, where:
o [[ViogpollLip < L and Ey,-p, [lIx0lI?] < poly(d).

T . —_~
o JiTIR = Viogpuli, dt < O(2/d).

The Lipschitz score assumption is removed by stopping early
at time 7, with complexity poly(d, 1/z, 1/¢).

\. J

Remarks: p > 0,but [P # 1.
It implies that on 99% of the space, e “p < p < €“p.
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Reduction framework

21

Theorem [CKMM *25]: The DDPM density estimator achieves
Exy~pollog(p(x0)/p(x0))| < e in poly(d, L, 1/¢) time, where:
o [[ViogpollLip < L and Ey~p, [lIx0l?] < poly(d).

T . —_—~
° fo I[s: = V Iogptlliz(pt) dt < O(€?/d).
The Lipschitz score assumption is removed by stopping early
at time 7, with complexity poly(d, 1/z, 1/¢).

PAC density estimation is as easy as learning the scores.
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Example: application to the Holder class

Let 7;(C, L) consist of Holder densities on [—1, 1]. (Here,
s = smoothness, C = lower bd. on density, L = size of Holder ball.)

[Dou, Kotekal, Xu, Zhou *24] obtained optimal rates of score estimation for
Zs(C, L), leading to a minimax optimal sampler.

22 Yale



Example: application to the Holder class

22

Let 7;(C, L) consist of Holder densities on [—1, 1]. (Here,
s = smoothness, C = lower bd. on density, L = size of Holder ball.)

[Dou, Kotekal, Xu, Zhou *24] obtained optimal rates of score estimation for
Zs(C, L), leading to a minimax optimal sampler.

Theorem [CKMM °25]: There is a density estimator based on
DDPM score matching such that for the L' risk Z(p,p) =
f[_1 1] E[p(x) — p(x0)|, the estimator achieves the minimax

risk n=2/>*1) over #,(C, L) up to a +/log n factor.
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[Dou, Kotekal, Xu, Zhou *24] obtained optimal rates of score estimation for
Zs(C, L), leading to a minimax optimal sampler.

Theorem [CKMM °25]: There is a density estimator based on
DDPM score matching such that for the L' risk Z(p,p) =
f[_1 1] E[p(x) — p(x0)|, the estimator achieves the minimax

risk n=2/>*1) over #,(C, L) up to a +/log n factor.

. J

See paper for a Gaussian mixture example.
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Computational lower bounds
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e There are various frameworks for proving hardness of density
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Computational lower bounds

e There are various frameworks for proving hardness of density
estimation. Do they lead to hardness of score estimation?

e Some frameworks, such as SQ, are information-theoretic, so
they apply to density estimators and generators.
e What about lower bounds from computational complexity?
> Cryptographic hardness: Solving a task is as hard as
breaking a cryptosystem.
> Recently, cryptographic hardness has been proven for some
density estimation tasks.
> Cryptographic hardness results for learning a sampler
remain elusive.
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Cryptographic hardness for learning score functions

Recently, [Song *24] proved crypto hardness of learning score functions
for Gaussian mixtures via a tailored argument.
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Cryptographic hardness for learning score functions

Recently, [Song *24] proved crypto hardness of learning score functions
for Gaussian mixtures via a tailored argument.

Our reduction framework yields a general blueprint:

To prove crypto hardness for learning the scores of a family 9:
1. Check that & satisfies the conditions of our reduction.

2. Prove that PAC density estimation over & is crypto hard.

Learning the scores is as hard as PAC density estimation.
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Application to Gaussian mixtures

26

Corollary [CKMM °25]: For any ¢ > 0, it is cryptographically
hard to learn the score functions of mixtures of Gaussians with
up to d* components.
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Application to Gaussian mixtures

Corollary [CKMM ’25]: For any € > 0, it is cryptographically
hard to learn the score functions of mixtures of Gaussians with
up to d* components.

Reduction chain for experts:
e score estimation «— PAC density estimation ( )
e — CLWE (following [Bruna, Regev, Song, Tang ’21])
e — LWE (following [Gupte, Vafa, Vaikuntanathan ’22])
e« lattice problems [Regev '09]

e  « post-quantum cryptography.
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Summary

27

('Score estimation )q—[m—(DDPM score estimation)

Prior works

( Generation )

This work This work

e

AN

(PAC density estimation) (Parameter estimation)

Thank you for your attention!
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