#### DDPM score matching and distribution learning

Sinho Chewi Yale University

April 28, 2025 ICLR Workshop on Deep Generative Models in Machine Learning: Theory, Principles, and Efficacy (DeLTa)



Alkis Kalavasis Yale

1



Anay Mehrotra Yale



Omar Montasser Yale



### **Diffusion models**

- Data distribution:  $p_{\text{data}} = p_0$ .
- Forward process:  $dX_t = -X_t dt + \sqrt{2} dB_t$ ,  $X_t \sim p_t$ .
- Reverse process:  $dX_t^{\leftarrow} = \{X_t^{\leftarrow} + 2\nabla \log p_{T-t}(X_t^{\leftarrow})\} dt + \sqrt{2} dB_t.$

## Diffusion models

- Data distribution:  $p_{\text{data}} = p_0$ .
- Forward process:  $dX_t = -X_t dt + \sqrt{2} dB_t$ ,  $X_t \sim p_t$ .
- Reverse process:  $dX_t^{\leftarrow} = \{X_t^{\leftarrow} + 2\nabla \log p_{T-t}(X_t^{\leftarrow})\} dt + \sqrt{2} dB_t.$

#### Training

• Learn score functions via the score matching objective:  $\nabla \log p_t = \arg \min_{s_t: \mathbb{R}^d \to \mathbb{R}^d} \mathbb{E}_{x_0 \sim p_0} SM_t(s_t, x_0)$ , where

$$SM_t(s_t, x_0)$$
  
$$\coloneqq \mathbb{E}_{x_t \sim q_{t\mid 0}^{OU}(\cdot \mid x_0)} [\|s_t(x_t)\|^2 + 2\langle s_t(x_t), \nabla \log q_{t\mid 0}^{OU}(x_t \mid x_0) \rangle].$$

## Diffusion models

- Data distribution:  $p_{\text{data}} = p_0$ .
- Forward process:  $dX_t = -X_t dt + \sqrt{2} dB_t$ ,  $X_t \sim p_t$ .
- Reverse process:  $dX_t^{\leftarrow} = \{X_t^{\leftarrow} + 2\nabla \log p_{T-t}(X_t^{\leftarrow})\} dt + \sqrt{2} dB_t.$

#### Training

• Learn score functions via the score matching objective:  $\nabla \log p_t = \arg \min_{s_t: \mathbb{R}^d \to \mathbb{R}^d} \mathbb{E}_{x_0 \sim p_0} SM_t(s_t, x_0)$ , where

$$SM_t(s_t, x_0) \coloneqq \mathbb{E}_{x_t \sim q_{t|0}^{OU}(\cdot \mid x_0)} [\|s_t(x_t)\|^2 + 2 \langle s_t(x_t), \nabla \log q_{t|0}^{OU}(x_t \mid x_0) \rangle].$$

• Empirical version:  $\hat{s}_t = \arg\min_{s_t \in \mathcal{S}_t} n^{-1} \sum_{i=1}^n SM_t(s_t, x_0^{(i)}).$ 

#### Generation

• Once we have estimated scores  $\{\widehat{s}_t\}_{t\in[0,T]}$ , we discretize the reverse process:  $d\widehat{X}_t^{\leftarrow} = \{\widehat{X}_t^{\leftarrow} + 2\widehat{s}_{t_-}(\widehat{X}_{t_-}^{\leftarrow})\} dt + \sqrt{2} dB_t$ , where  $\widehat{X}_0^{\leftarrow} \sim \widehat{p}_T = N(0, I_d)$  and  $\widehat{X}_T^{\leftarrow} \sim \widehat{p}_0$ .

#### Generation

• Once we have estimated scores  $\{\widehat{s}_t\}_{t\in[0,T]}$ , we discretize the reverse process:  $d\widehat{X}_t^{\leftarrow} = \{\widehat{X}_t^{\leftarrow} + 2\widehat{s}_{t_-}(\widehat{X}_{t_-}^{\leftarrow})\} dt + \sqrt{2} dB_t$ , where  $\widehat{X}_0^{\leftarrow} \sim \widehat{p}_T = N(0, I_d)$  and  $\widehat{X}_T^{\leftarrow} \sim \widehat{p}_0$ .

**Theorem:** Denoising diffusion models (DDPM) achieve  $TV(\hat{p}_0, p_0) \le \varepsilon_*$  in poly $(d, L, 1/\varepsilon_*)$  steps, where:

•  $\|\nabla \log p_t\|_{\operatorname{Lip}} \leq L$  and  $\mathbb{E}_{x_0 \sim p_0}[\|x_0\|^2] \leq \operatorname{poly}(d)$ .

• 
$$\int_0^T \|\widehat{s}_{t_-} - \nabla \log p_{t_-}\|_{L^2(p_t)}^2 \, \mathrm{d}t \le \varepsilon_*^2$$

#### Generation

• Once we have estimated scores  $\{\widehat{s}_t\}_{t\in[0,T]}$ , we discretize the reverse process:  $d\widehat{X}_t^{\leftarrow} = \{\widehat{X}_t^{\leftarrow} + 2\widehat{s}_{t_-}(\widehat{X}_{t_-}^{\leftarrow})\} dt + \sqrt{2} dB_t$ , where  $\widehat{X}_0^{\leftarrow} \sim \widehat{p}_T = N(0, I_d)$  and  $\widehat{X}_T^{\leftarrow} \sim \widehat{p}_0$ .

**Theorem:** Denoising diffusion models (DDPM) achieve  $TV(\hat{p}_0, p_0) \le \varepsilon_*$  in poly $(d, L, 1/\varepsilon_*)$  steps, where:

- $\|\nabla \log p_t\|_{\operatorname{Lip}} \leq L$  and  $\mathbb{E}_{x_0 \sim p_0}[\|x_0\|^2] \leq \operatorname{poly}(d)$ .
- $\int_0^T \|\widehat{s}_{t-} \nabla \log p_{t-}\|_{L^2(p_t)}^2 \, \mathrm{d}t \le \varepsilon_*^2.$

The Lipschitz score assumption is removed by stopping early at time  $\tau$ , with complexity  $poly(d, log(1/\tau), 1/\varepsilon_*)$ .

**Theorem:** Denoising diffusion models (DDPM) achieve  $TV(\hat{p}_0, p_0) \le \varepsilon_*$  in poly $(d, L, 1/\varepsilon_*)$  steps, where:

- $\|\nabla \log p_t\|_{\operatorname{Lip}} \leq L$  and  $\mathbb{E}_{x_0 \sim p_0}[\|x_0\|^2] \leq \operatorname{poly}(d)$ .
- $\int_0^T \|\widehat{s}_{t_-} \nabla \log p_{t_-}\|_{L^2(p_t)}^2 \, \mathrm{d}t \le \varepsilon_*^2.$

The Lipschitz score assumption is removed by stopping early at time  $\tau$ , with complexity  $poly(d, log(1/\tau), 1/\varepsilon_*)$ .

- Sitan Chen, **S.C**., Jerry Li, Yuanzhi Li, Adil Salim, Anru Zhang, *Sampling is as easy as learning the score*. ICLR 2023.
- [Concurrent] Holden Lee, Jianfeng Lu, Yixin Tan, *Convergence of score-based generative modeling for general data distributions*. ALT 2023.
- Many, many follow-up works...

• Given access to evaluations of the likelihood of *p*<sub>0</sub>, output a sample from *p*<sub>0</sub>.

Given access to evaluations of the likelihood of *p*<sub>0</sub>, output a sample from *p*<sub>0</sub>. √ (standard MCMC setup)

- Given access to evaluations of the likelihood of *p*<sub>0</sub>, output a sample from *p*<sub>0</sub>. √ (standard MCMC setup)
- Given samples from *p*<sub>0</sub>, learn the score functions along the diffusion.

- Given access to evaluations of the likelihood of *p*<sub>0</sub>, output a sample from *p*<sub>0</sub>. √ (standard MCMC setup)
- Given samples from p<sub>0</sub>, learn the score functions along the diffusion. 
   √ (statistical theory for score matching)

- Given access to evaluations of the likelihood of *p*<sub>0</sub>, output a sample from *p*<sub>0</sub>. √ (standard MCMC setup)
- Given samples from *p*<sub>0</sub>, learn the score functions along the diffusion. √ (statistical theory for score matching)
- Given score functions along the diffusion, output a new sample from *p*<sub>0</sub>.

- Given access to evaluations of the likelihood of *p*<sub>0</sub>, output a sample from *p*<sub>0</sub>. √ (standard MCMC setup)
- Given samples from *p*<sub>0</sub>, learn the score functions along the diffusion. 
   √ (statistical theory for score matching)
- Given score functions along the diffusion, output a new sample from *p*<sub>0</sub>. √ (see previous theorem)

- Given access to evaluations of the likelihood of *p*<sub>0</sub>, output a sample from *p*<sub>0</sub>. √ (standard MCMC setup)
- Given samples from *p*<sub>0</sub>, learn the score functions along the diffusion. 
   √ (statistical theory for score matching)
- Given score functions along the diffusion, output a new sample from *p*<sub>0</sub>. √ (see previous theorem)
- Given samples from  $p_0$ , generate new samples from  $p_0$ .

- Given access to evaluations of the likelihood of *p*<sub>0</sub>, output a sample from *p*<sub>0</sub>. √ (standard MCMC setup)
- Given samples from *p*<sub>0</sub>, learn the score functions along the diffusion. 
   √ (statistical theory for score matching)
- Given score functions along the diffusion, output a new sample from *p*<sub>0</sub>. √ (see previous theorem)
- Given samples from  $p_0$ , generate new samples from  $p_0$ . NO, this is information-theoretically impossible.

- Given access to evaluations of the likelihood of *p*<sub>0</sub>, output a sample from *p*<sub>0</sub>. √ (standard MCMC setup)
- Given samples from *p*<sub>0</sub>, learn the score functions along the diffusion. 
   √ (statistical theory for score matching)
- Given score functions along the diffusion, output a new sample from *p*<sub>0</sub>. √ (see previous theorem)
- Given samples from  $p_0$ , generate new samples from  $p_0$ . NO, this is information-theoretically impossible.
- Given samples from  $p_0$ , "learn a sampler" for  $p_0$ .

- Given access to evaluations of the likelihood of *p*<sub>0</sub>, output a sample from *p*<sub>0</sub>. √ (standard MCMC setup)
- Given samples from *p*<sub>0</sub>, learn the score functions along the diffusion. 
   √ (statistical theory for score matching)
- Given score functions along the diffusion, output a new sample from *p*<sub>0</sub>. √ (see previous theorem)
- Given samples from  $p_0$ , generate new samples from  $p_0$ . NO, this is information-theoretically impossible.
- Given samples from p<sub>0</sub>, "learn a sampler" for p<sub>0</sub>. √ (yes, we shall see that this makes sense)



What does it mean to "learn" a family  $\mathscr{P}$  of distributions, given samples  $X^{(1)}, \ldots, X^{(n)} \stackrel{\text{i.i.d.}}{\sim} p \in \mathscr{P}$ ?

What does it mean to "learn" a family  $\mathscr{P}$  of distributions, given samples  $X^{(1)}, \ldots, X^{(n)} \stackrel{\text{i.i.d.}}{\sim} p \in \mathscr{P}$ ? Depends on the *representation*.

What does it mean to "learn" a family  $\mathscr{P}$  of distributions, given samples  $X^{(1)}, \ldots, X^{(n)} \stackrel{\text{i.i.d.}}{\sim} p \in \mathscr{P}$ ? Depends on the *representation*.

(Parameter Recovery) If 𝒫 = {p<sub>θ</sub> : θ ∈ Θ}, the goal is to output an estimate θ̂ of the parameter.

What does it mean to "learn" a family  $\mathscr{P}$  of distributions, given samples  $X^{(1)}, \ldots, X^{(n)} \stackrel{\text{i.i.d.}}{\sim} p \in \mathscr{P}$ ? Depends on the *representation*.

- (Parameter Recovery) If 𝒫 = {p<sub>θ</sub> : θ ∈ Θ}, the goal is to output an estimate θ̂ of the parameter.

What does it mean to "learn" a family  $\mathscr{P}$  of distributions, given samples  $X^{(1)}, \ldots, X^{(n)} \stackrel{\text{i.i.d.}}{\sim} p \in \mathscr{P}$ ? Depends on the *representation*.

- (Parameter Recovery) If 𝒫 = {p<sub>θ</sub> : θ ∈ Θ}, the goal is to output an estimate θ̂ of the parameter.
- (Density Estimation) The goal is to output an *evaluator*, i.e., a function p
   : ℝ<sup>d</sup> → ℝ such that p
   (x) is a good estimator of the density p(x) at x.
- (Learning a Sampler) The goal is to output a generator, i.e., a function \$\hat{\varsigma}\$ : [0, 1] → ℝ<sup>d</sup> which takes a random seed U ~ uniform([0, 1]), such that law(\$\hat{\varsigma}\$(U) | X) ≈ p.

### The distinction is computational

**Remark:** Density estimation and learning a sampler are equivalent from the lens of information theory, but not from the lens of computational complexity.

### The distinction is computational

**Remark:** Density estimation and learning a sampler are equivalent from the lens of information theory, but not from the lens of computational complexity.

• E.g., minimax lower bounds in statistics apply to both models.

**Remark:** Density estimation and learning a sampler are equivalent from the lens of information theory, but not from the lens of computational complexity.

- E.g., minimax lower bounds in statistics apply to both models.
- This is not true for computational lower bounds.

## Reinterpreting the DDPM result as distribution learning

**Theorem (informal):** Let  $\mathscr{P}$  be nearly any ("realistic") family of distributions. Then, the sample complexity of learning a sampler for  $\mathscr{P}$  is at most the sample complexity of learning the score functions along DDPM for  $\mathscr{P}$ .

Moreover, the computational complexity is at most a polynomial factor worse.

## Reinterpreting the DDPM result as distribution learning

**Theorem (informal):** Let  $\mathscr{P}$  be nearly any ("realistic") family of distributions. Then, the sample complexity of learning a sampler for  $\mathscr{P}$  is at most the sample complexity of learning the score functions along DDPM for  $\mathscr{P}$ .

Moreover, the computational complexity is at most a polynomial factor worse.

Learning a sampler is as easy as learning the scores.

Examples of learning a sampler via DDPM

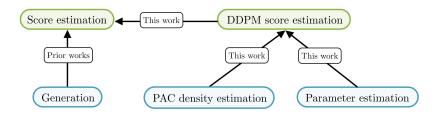
#### This is a growing literature!

- [Oko, Akiyama, Suzuki '23; Dou, Kotekal, Xu, Zhou '24] Score matching along DDPM yields minimax optimal samplers for Besov and Hölder classes of densities.
- [Chen, Kontonis, Shah '24; Gatmiry, Kelner, Lee '24] Score matching along DDPM yields new algorithmic results for learning mixtures of Gaussians (in the sense of learning a sampler).

• ...

#### Our new results

[S.C., Alkis Kalavasis, Anay Mehrotra, Omar Montasser, DDPM score matching and distribution learning. '25]



#### Outline

- A key identity for the likelihood
- Implications for parameter estimation
- Implications for density estimation
- Implications for computational lower bounds

## Likelihood identity

Recall:

- $\nabla \log p_t = \arg \min_{s_t: \mathbb{R}^d \to \mathbb{R}^d} \mathbb{E}_{x_0 \sim p_0} \operatorname{SM}_t(s_t, x_0).$
- $\widehat{s}_t = \arg\min_{s_t \in \mathcal{S}_t} n^{-1} \sum_{i=1}^n SM_t(s_t, x_0^{(i)}).$

## Likelihood identity

Recall:

- $\nabla \log p_t = \arg \min_{s_t: \mathbb{R}^d \to \mathbb{R}^d} \mathbb{E}_{x_0 \sim p_0} \operatorname{SM}_t(s_t, x_0).$
- $\widehat{s}_t = \arg\min_{s_t \in \mathcal{S}_t} n^{-1} \sum_{i=1}^n SM_t(s_t, x_0^{(i)}).$

Lemma:

$$-\log p_0(x_0) = \int_0^T SM_t(\nabla \log p_t, x_0) dt + C_{d,T} + O(e^{-2T}),$$
  
where  $C_{d,T} = \frac{d}{2} \log(2\pi e (1 - e^{-2T})).$ 

We do not claim novelty: see, e.g., [Song, Durkan, Murray, Ermon '21; Chen, Liu, Theodorou '22; Li, Yan '24; ...].

# Parameter estimation

#### Parameter estimation

**Setting:**  $\mathscr{P} = \{p_{\theta} : \theta \in \Theta\}, \text{ data } x_0^{(1)}, \dots, x_0^{(n)} \stackrel{\text{i.i.d.}}{\sim} p_{\theta^{\star}}.$ 

**Setting:** 
$$\mathscr{P} = \{p_{\theta} : \theta \in \Theta\}, \text{ data } x_0^{(1)}, \dots, x_0^{(n)} \stackrel{\text{i.i.d.}}{\sim} p_{\theta^{\star}}.$$

#### **Prior works**

• [Koehler, Heckett, Risteski '23] studied the implicit score matching (ISM) estimator:  $\widehat{\theta}_n^{\text{ISM}} \coloneqq \arg\min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n \{ \|\nabla \log p_\theta(x_0^{(i)})\|^2 + 2\Delta \log p_\theta(x_0^{(i)}) \}.$ They showed that  $\sqrt{n} (\widehat{\theta}_n^{\text{ISM}} - \theta^{\star}) \xrightarrow{d} N(0, \Sigma^{\text{ISM}}).$ 

**Setting:** 
$$\mathscr{P} = \{p_{\theta} : \theta \in \Theta\}, \text{ data } x_0^{(1)}, \dots, x_0^{(n)} \stackrel{\text{i.i.d.}}{\sim} p_{\theta^{\star}}.$$

#### **Prior works**

• [Koehler, Heckett, Risteski '23] studied the implicit score matching (ISM) estimator:  $\hat{\theta}_n^{\text{ISM}} \coloneqq \arg\min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n \{ \|\nabla \log p_\theta(x_0^{(i)})\|^2 + 2\Delta \log p_\theta(x_0^{(i)}) \}.$ 

They showed that  $\sqrt{n} (\widehat{\theta}_n^{\text{ISM}} - \theta^*) \xrightarrow{d} N(0, \Sigma^{\text{ISM}}).$ 

≥ When  $\mathscr{P}$  satisfies a "restricted Poincaré inequality", Σ<sup>ISM</sup> can be bounded in terms of Σ<sup>MLE</sup> =  $\mathcal{I}(\theta^*)^{-1}$ .

**Setting:** 
$$\mathscr{P} = \{p_{\theta} : \theta \in \Theta\}, \text{ data } x_0^{(1)}, \dots, x_0^{(n)} \stackrel{\text{i.i.d.}}{\sim} p_{\theta^{\star}}.$$

#### **Prior works**

• [Koehler, Heckett, Risteski '23] studied the implicit score matching (ISM) estimator:

 $\widehat{\theta}_n^{\text{ISM}} \coloneqq \arg\min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n \{ \|\nabla \log p_\theta(x_0^{(i)})\|^2 + 2\Delta \log p_\theta(x_0^{(i)}) \}.$ 

They showed that  $\sqrt{n} \left( \widehat{\theta}_n^{\text{ISM}} - \theta^{\star} \right) \xrightarrow{d} N(0, \Sigma^{\text{ISM}}).$ 

≥ When  $\mathscr{P}$  satisfies a "restricted Poincaré inequality", Σ<sup>ISM</sup> can be bounded in terms of Σ<sup>MLE</sup> =  $\mathcal{I}(\theta^*)^{-1}$ .

 $\triangleright$  In general, Σ<sup>ISM</sup> ≫ Σ<sup>MLE</sup> (provably inefficient!).

#### **Prior works**

• Since a Poincaré inequality is classically related to *mixing times* for Markov chains, their main message was:

#### **Prior works**

• Since a Poincaré inequality is classically related to *mixing times* for Markov chains, their main message was:

rapid mixing 🛶 statistical efficiency

• For Gaussian mixtures, [Shah, Chen, Klivans '23; Qin, Risteski '24] established polynomial sample complexity via score matching along other diffusions.

#### DDPM score matching and parameter estimation

To estimate  $\theta^{\star}$ , let us minimize the DDPM score matching loss:

$$\widehat{\theta}_n^{\text{DDPM}} \coloneqq \argmin_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n \int_0^T SM_t(\nabla \log p_{\theta,t}, x_0^{(i)}) \, \mathrm{d}t$$

#### DDPM score matching and parameter estimation

To estimate  $\theta^{\star}$ , let us minimize the DDPM score matching loss:

$$\widehat{\theta}_n^{\text{DDPM}} \coloneqq \operatorname*{arg\,min}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n \int_0^T \mathrm{SM}_t(\nabla \log p_{\theta,t}, x_0^{(i)}) \, \mathrm{d}t$$

By the likelihood identity:

$$\begin{aligned} \arg\min_{\theta\in\Theta} \left\{ -\frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}(x_0^{(i)}) \right\} \\ &= \arg\min_{\theta\in\Theta} \left\{ \frac{1}{n} \sum_{i=1}^{n} \int_0^T \mathrm{SM}_t(\nabla \log p_{\theta,t}, x_0^{(i)}) \, \mathrm{d}t + C_{d,T} + O(e^{-2T}) \right\} \end{aligned}$$



# DDPM score matching achieves full efficiency

**Theorem** [CKMM '25]: Under standard conditions, provided that  $T = T_n$  satisfies  $T_n - \frac{1}{2} \log n \rightarrow \infty$ ,

$$\sqrt{n} \left( \widehat{\theta}_n^{\text{DDPM}} - \theta^{\star} \right) \xrightarrow{d} \mathcal{N}(0, \Sigma^{\text{MLE}})$$

# DDPM score matching achieves full efficiency

**Theorem** [CKMM '25]: Under standard conditions, provided that  $T = T_n$  satisfies  $T_n - \frac{1}{2} \log n \rightarrow \infty$ ,

$$\sqrt{n} \, (\widehat{\theta}_n^{\text{DDPM}} - \theta^{\star}) \xrightarrow{d} \mathsf{N}(0, \Sigma^{\text{MLE}}) \, .$$

Parameter estimation is as easy as (properly) learning scores.

# Density estimation

DDPM score matching and density estimation

Likelihood identity:

$$-\log p_0(x_0) = \int_0^T SM_t(\nabla \log p_t, x_0) \, \mathrm{d}t + C_{d,T} + O(e^{-2T}) \, .$$

DDPM score matching and density estimation

Likelihood identity:

$$-\log p_0(x_0) = \int_0^T SM_t(\nabla \log p_t, x_0) \, \mathrm{d}t + C_{d,T} + O(e^{-2T}) \, .$$

An obvious idea is to estimate  $-\log p_0(x_0)$  by outputting

$$-\log \widehat{p}_0(x_0) \coloneqq \int_0^T \mathsf{SM}_t(\widehat{s}_t, x_0) \, \mathrm{d}t + C_{d,T} \, .$$





- $\|\nabla \log p_0\|_{\operatorname{Lip}} \leq L$  and  $\mathbb{E}_{x_0 \sim p_0}[\|x_0\|^2] \leq \operatorname{poly}(d)$ .
- $\int_0^T \|\widehat{s}_t \nabla \log p_t\|_{L^2(p_t)}^2 dt \le \widetilde{O}(\varepsilon^2/d).$

**Theorem [CKMM '25]:** The DDPM density estimator achieves  $\mathbb{E}_{x_0 \sim p_0} |\log(\widehat{p}(x_0)/p(x_0))| \le \varepsilon$  in poly $(d, L, 1/\varepsilon)$  time, where:

- $\|\nabla \log p_0\|_{\text{Lip}} \le L \text{ and } \mathbb{E}_{x_0 \sim p_0}[\|x_0\|^2] \le \text{poly}(d).$
- $\int_0^T \|\widehat{s}_t \nabla \log p_t\|_{L^2(p_t)}^2 dt \le \widetilde{O}(\varepsilon^2/d).$

The Lipschitz score assumption is removed by stopping early at time  $\tau$ , with complexity  $poly(d, 1/\tau, 1/\varepsilon)$ .

**Theorem [CKMM '25]:** The DDPM density estimator achieves  $\mathbb{E}_{x_0 \sim p_0} |\log(\widehat{p}(x_0)/p(x_0))| \le \varepsilon$  in poly $(d, L, 1/\varepsilon)$  time, where:

- $\|\nabla \log p_0\|_{\text{Lip}} \le L \text{ and } \mathbb{E}_{x_0 \sim p_0}[\|x_0\|^2] \le \text{poly}(d).$
- $\int_0^T \|\widehat{s}_t \nabla \log p_t\|_{L^2(p_t)}^2 dt \le \widetilde{O}(\varepsilon^2/d).$

The Lipschitz score assumption is removed by stopping early at time  $\tau$ , with complexity  $poly(d, 1/\tau, 1/\varepsilon)$ .

**Remarks:**  $\widehat{p} \ge 0$ , but  $\int \widehat{p} \ne 1$ .

**Theorem [CKMM '25]:** The DDPM density estimator achieves  $\mathbb{E}_{x_0 \sim p_0} |\log(\widehat{p}(x_0)/p(x_0))| \le \varepsilon$  in poly $(d, L, 1/\varepsilon)$  time, where:

- $\|\nabla \log p_0\|_{\text{Lip}} \le L \text{ and } \mathbb{E}_{x_0 \sim p_0}[\|x_0\|^2] \le \text{poly}(d).$
- $\int_0^T \|\widehat{s}_t \nabla \log p_t\|_{L^2(p_t)}^2 dt \le \widetilde{O}(\varepsilon^2/d).$

The Lipschitz score assumption is removed by stopping early at time  $\tau$ , with complexity  $poly(d, 1/\tau, 1/\varepsilon)$ .

**Remarks:**  $\widehat{p} \ge 0$ , but  $\int \widehat{p} \ne 1$ . It implies that on 99% of the space,  $e^{-\varepsilon}p \le \widehat{p} \le e^{\varepsilon}p$ .



**Theorem [CKMM '25]:** The DDPM density estimator achieves  $\mathbb{E}_{x_0 \sim p_0} |\log(\widehat{p}(x_0)/p(x_0))| \le \varepsilon$  in poly $(d, L, 1/\varepsilon)$  time, where:

- $\|\nabla \log p_0\|_{\text{Lip}} \le L \text{ and } \mathbb{E}_{x_0 \sim p_0}[\|x_0\|^2] \le \text{poly}(d).$
- $\int_0^T \|\widehat{s}_t \nabla \log p_t\|_{L^2(p_t)}^2 dt \le \widetilde{O}(\varepsilon^2/d).$

The Lipschitz score assumption is removed by stopping early at time  $\tau$ , with complexity  $poly(d, 1/\tau, 1/\varepsilon)$ .

PAC density estimation is as easy as learning the scores.

#### Example: application to the Hölder class

Let  $\mathscr{H}_s(C, L)$  consist of Hölder densities on [-1, 1]. (Here, s = smoothness, C = lower bd. on density, L = size of Hölder ball.)

[Dou, Kotekal, Xu, Zhou '24] obtained optimal rates of score estimation for  $\mathscr{H}_s(C, L)$ , leading to a minimax optimal sampler.

### Example: application to the Hölder class

Let  $\mathscr{H}_s(C, L)$  consist of Hölder densities on [-1, 1]. (Here, s = smoothness, C = lower bd. on density, L = size of Hölder ball.)

[Dou, Kotekal, Xu, Zhou '24] obtained optimal rates of score estimation for  $\mathscr{H}_s(C, L)$ , leading to a minimax optimal sampler.

**Theorem [CKMM '25]:** There is a density estimator based on DDPM score matching such that for the  $L^1$  risk  $\mathscr{R}(\widehat{p}, p) := \int_{[-1,1]} \mathbb{E}[\widehat{p}(x_0) - p(x_0)]$ , the estimator achieves the minimax risk  $n^{-2s/(2s+1)}$  over  $\mathscr{H}_s(C, L)$  up to a  $\sqrt{\log n}$  factor.

# Example: application to the Hölder class

Let  $\mathscr{H}_s(C, L)$  consist of Hölder densities on [-1, 1]. (Here, s = smoothness, C = lower bd. on density, L = size of Hölder ball.)

[Dou, Kotekal, Xu, Zhou '24] obtained optimal rates of score estimation for  $\mathscr{H}_s(C, L)$ , leading to a minimax optimal sampler.

**Theorem [CKMM '25]:** There is a density estimator based on DDPM score matching such that for the  $L^1$  risk  $\mathscr{R}(\widehat{p}, p) := \int_{[-1,1]} \mathbb{E}[\widehat{p}(x_0) - p(x_0)]$ , the estimator achieves the minimax risk  $n^{-2s/(2s+1)}$  over  $\mathscr{H}_s(C, L)$  up to a  $\sqrt{\log n}$  factor.

See paper for a Gaussian mixture example.



• There are various frameworks for proving hardness of density estimation. Do they lead to hardness of score estimation?

- There are various frameworks for proving hardness of density estimation. Do they lead to hardness of score estimation?
- Some frameworks, such as SQ, are information-theoretic, so they apply to density estimators and generators.

- There are various frameworks for proving hardness of density estimation. Do they lead to hardness of score estimation?
- Some frameworks, such as SQ, are information-theoretic, so they apply to density estimators and generators.
- What about lower bounds from computational complexity?

- There are various frameworks for proving hardness of density estimation. Do they lead to hardness of score estimation?
- Some frameworks, such as SQ, are information-theoretic, so they apply to density estimators and generators.
- What about lower bounds from computational complexity?
  - Cryptographic hardness: Solving a task is as hard as breaking a cryptosystem.

- There are various frameworks for proving hardness of density estimation. Do they lead to hardness of score estimation?
- Some frameworks, such as SQ, are information-theoretic, so they apply to density estimators and generators.
- What about lower bounds from computational complexity?
  - Cryptographic hardness: Solving a task is as hard as breaking a cryptosystem.
  - Recently, cryptographic hardness has been proven for some density estimation tasks.

- There are various frameworks for proving hardness of density estimation. Do they lead to hardness of score estimation?
- Some frameworks, such as SQ, are information-theoretic, so they apply to density estimators and generators.
- What about lower bounds from computational complexity?
  - Cryptographic hardness: Solving a task is as hard as breaking a cryptosystem.
  - Recently, cryptographic hardness has been proven for some density estimation tasks.
  - Cryptographic hardness results for learning a sampler remain elusive.

# Cryptographic hardness for learning score functions

Recently, [Song '24] proved crypto hardness of learning score functions for Gaussian mixtures via a tailored argument.

Cryptographic hardness for learning score functions

Recently, [Song '24] proved crypto hardness of learning score functions for Gaussian mixtures via a tailored argument.

Our reduction framework yields a *general* blueprint:

To prove crypto hardness for learning the scores of a family  $\mathcal{P}:$ 

- 1. Check that  ${\mathscr P}$  satisfies the conditions of our reduction.
- 2. Prove that PAC density estimation over  ${\mathscr P}$  is crypto hard.

Cryptographic hardness for learning score functions

Recently, [Song '24] proved crypto hardness of learning score functions for Gaussian mixtures via a tailored argument.

Our reduction framework yields a *general* blueprint:

To prove crypto hardness for learning the scores of a family  $\mathcal{P} {:}$ 

- 1. Check that  $\mathcal{P}$  satisfies the conditions of our reduction.
- 2. Prove that PAC density estimation over  $\mathcal P$  is crypto hard.

Learning the scores is as <u>hard</u> as PAC density estimation.

# Application to Gaussian mixtures

**Corollary** [CKMM '25]: For any  $\varepsilon > 0$ , it is cryptographically hard to learn the score functions of mixtures of Gaussians with up to  $d^{\varepsilon}$  components.

# Application to Gaussian mixtures

**Corollary** [CKMM '25]: For any  $\varepsilon > 0$ , it is cryptographically hard to learn the score functions of mixtures of Gaussians with up to  $d^{\varepsilon}$  components.

Reduction chain for experts:

- score estimation ← PAC density estimation (our framework)
- ← CLWE (following [Bruna, Regev, Song, Tang '21])
- ← LWE (following [Gupte, Vafa, Vaikuntanathan '22])
- ← lattice problems [Regev '09]
- ← post-quantum cryptography.

Summary

