Efficient Statistics With Unknown Truncation,

Polynomial Time Algorithms, Beyond Gaussians

Jane H. Lee

Yale

Anay Mehrotra

Manolis Zampetakis

₩ FOCS 2024

Estimation from Truncated Data

Estimation from Truncated Data

Q: *Were older quasars brighter?*

Q: *Were older quasars brighter?*

Q: *Were older quasars brighter?*

Aligorium

Q: *Were older quasars brighter?*

Q: *Were older quasars brighter?*

Exponential Family

$$\{\mathcal{E}_{h,t}(\theta) \propto h(x) \cdot e^{-\theta^{\mathsf{T}} t(x)} : \theta \in \mathbb{R}^m\}$$

Target Parameter

 $\boldsymbol{\theta}^{\star} \in \mathbb{R}^{m}$

Exponential Family

$$\{\mathcal{E}_{h,t}(\theta) \propto h(x) \cdot e^{-\theta^{\mathsf{T}} t(x)} : \theta \in \mathbb{R}^m\}$$

Target Parameter

 $\boldsymbol{\theta}^{\star} \in \mathbb{R}^{m}$

Survival set: $S^* \subseteq \mathbb{R}^d$

Survival set: $S^* \subseteq \mathbb{R}^d$ The mass of S^* is at least $\mathcal{E}(S^*; \theta^*) = \alpha$ where α is at least 1%

Survival set: $S^* \subseteq \mathbb{R}^d$ The mass of S^* is at least $\mathcal{E}(S^*; \theta^*) = \alpha$ where α is at least 1%

Samples observed from the truncated distribution

Survival set: $S^* \subseteq \mathbb{R}^d$ The mass of S^* is at least $\mathcal{E}(S^*; \theta^*) = \alpha$ where α is at least 1%

Samples observed from the truncated distribution

Long history in the Statistics and Economics Literature

- Galton (1897), Pearson (1902), Pearson & Lee (1908), Fisher (1931), ..., Maddala (1983)...
- Computationally inefficient methods

Long history in the Statistics and Economics Literature

- Galton (1897), Pearson (1902), Pearson & Lee (1908), Fisher (1931), ..., Maddala (1983)...
- Computationally inefficient methods

 $O(d^2/\varepsilon^2)$ algorithms with "known" *S**

- Gaussians Daskalakis, Gouleakis, Tzamos, and Zampetakis (FOCS 2018)
- Certain exponential families Lee, Wibisono, Zampetakis (NeurIPS 2023)

Gaussian Surface Area $\Gamma(S)$: S

Surface area with respect to the Gaussian measure

 $d^{\operatorname{poly}(\Gamma(S^*)/\varepsilon)}$ algorithms with unknown S^*

• *Diagonal* gaussians

Kontonis, Tzamos, and Zampetakis (FOCS 2019)

Gaussian Surface Area $\Gamma(S)$:

Surface area with respect to the Gaussian measure

 $d^{\text{poly}(\Gamma(S^*)/\varepsilon)}$ algorithms with unknown S^*

- *Diagonal* gaussians
- SQ lower bound $d^{\text{poly}(\Gamma(S^*)/\varepsilon)}$

Gaussian Surface Area $\Gamma(S)$:

Kontonis, Tzamos, and Zampetakis (FOCS 2019) Diakonikolas, Kane, Pittas, Zarifis (COLT 2024)

Surface area with respect to the Gaussian measure

 $d^{\text{poly}(\Gamma(S^*)/\varepsilon)}$ algorithms with unknown S^*

- *Diagonal* gaussians
- SQ lower bound $d^{\text{poly}(\Gamma(S^*)/\varepsilon)}$

Kontonis, Tzamos, and Zampetakis (FOCS 2019) Diakonikolas, Kane, Pittas, Zarifis (COLT 2024)

Q1: Estimating *general* Gaussians with unknown *S**?

 $d^{\text{poly}(\Gamma(S^*)/\varepsilon)}$ algorithms with unknown S^*

- *Diagonal* gaussians
- SQ lower bound $d^{\text{poly}(\Gamma(S^*)/\varepsilon)}$

Kontonis, Tzamos, and Zampetakis (FOCS 2019) Diakonikolas, Kane, Pittas, Zarifis (COLT 2024)

- **Q1:** Estimating *general* Gaussians with unknown *S**?
- **Q2:** poly(d/ε) time estimation for halfspaces?

Results for Gaussians

Informal Theorem 1: In $d^{\text{poly}(\Gamma(S^*)/\varepsilon)}$ time, we can find (μ, Σ) , s.t., with 99% probability

 $d_{\mathrm{TV}}(\mathcal{N}(\mu, \Sigma), \mathcal{N}(\mu^{\star}, \Sigma^{\star})) \leq \varepsilon$.

Results for Gaussians

Informal Theorem 1: In $d^{\text{poly}(\Gamma(S^*)/\varepsilon)}$ time, we can find (μ, Σ) , s.t., with 99% probability

 $d_{\mathrm{TV}}(\mathcal{N}(\mu, \Sigma), \mathcal{N}(\mu^{\star}, \Sigma^{\star})) \leq \varepsilon$.

Informal Theorem 2: Let *S** be a halfspace or an axis-aligned box

In poly(d/ε) time, we can find (μ , Σ), s.t., with 99% probability

 $d_{\mathrm{TV}}(\mathcal{N}(\mu, \Sigma), \mathcal{N}(\mu^{\star}, \Sigma^{\star})) \leq \varepsilon$.

Results for Gaussians

Informal Theorem 1: In $d^{\text{poly}(\Gamma(S^*)/\varepsilon)}$ time, we can find (μ, Σ) , s.t., with 99% probability

 $d_{\mathrm{TV}}(\mathcal{N}(\mu, \Sigma), \mathcal{N}(\mu^{\star}, \Sigma^{\star})) \leq \varepsilon$.

Informal Theorem 2: Let *S** be a halfspace or an axis-aligned box

In poly(d/ε) time, we can find (μ , Σ), s.t., with 99% probability

 $d_{\mathrm{TV}}(\mathcal{N}(\mu, \Sigma), \mathcal{N}(\mu^{\star}, \Sigma^{\star})) \leq \varepsilon$.

Both results extend to truncated linear regression with Gaussian covariates with unknown S*

Degree-*p* polynomials poly(ε)-approximate *S*^{*} with respect to $\mathcal{E}(\theta^*)$ in *L*₂-norm

 $LL \equiv Log-likelihood$

 $LL \equiv Log-likelihood$

(1) Learn $S \approx S^{\star}$

 $LL \equiv Log-likelihood$

•+-1-1×1×

(1) Learn $\boldsymbol{S} \approx \boldsymbol{S}^{\star}$

(2) Learn θ^* with access to *S*

 $LL \equiv Log-likelihood$

(1) Learn $S \approx S^{\star}$

Time: $d^{\text{poly}(\Gamma(S^*)/\varepsilon)}$ or $\text{poly}(d/\varepsilon)$

(2) Learn θ^* with access to **S**

Time: $poly(d/\varepsilon)$

$LL \equiv Log-likelihood$

(1) Learn $S \approx S^{\star}$

Time: $d^{\text{poly}(\Gamma(S^*)/\varepsilon)}$ or $\text{poly}(d/\varepsilon)$

Time: poly(d/ε)

(2) Learn θ^* with access to **S**

 $LL \equiv Log-likelihood$

(1) Learn $S \approx S^{\star}$

Time: $d^{\text{poly}(\Gamma(S^*)/\varepsilon)}$ or $\text{poly}(d/\varepsilon)$

Time: poly(d/ε)

(2) Learn θ^* with access to **S**

 $LL \equiv Log-likelihood$

(1) Learn $S \approx S^{\star}$

Time: $d^{\text{poly}(\Gamma(S^*)/\varepsilon)}$ or $\text{poly}(d/\varepsilon)$

(2) Learn θ^* with access to **S**

Time: poly(d/ε)

 $LL \equiv Log-likelihood$

(1) Learn $S \approx S^{\star}$

Time: $d^{\text{poly}(\Gamma(S^*)/\varepsilon)}$ or $\text{poly}(d/\varepsilon)$

Time: poly(d/ε)

(2) Learn θ^* with access to **S**

 $LL \equiv Log-likelihood$

(1) Learn $S \approx S^{\star}$

Time: $d^{\text{poly}(\Gamma(S^*)/\varepsilon)}$ or $\text{poly}(d/\varepsilon)$

(2) Learn θ^* with access to *S*

Time: $poly(d/\varepsilon)$

 $LL \equiv Log-likelihood$

(1) Learn $S \approx S^{\star}$

Time: $d^{\text{poly}(\Gamma(S^*)/\varepsilon)}$ or $\text{poly}(d/\varepsilon)$

Challenge: Only have samples inside *S**

Almost *no classes* can be learned from just positive samples (Natarajan, STOC, 1987)

(2) Learn θ^* with access to *S*

Time: $poly(d/\varepsilon)$

 $LL \equiv Log-likelihood$

Challenge: Only have samples inside *S**

Almost *no classes* can be learned from just positive samples (Natarajan, STOC, 1987)

Challenge: LL with $S^* \rightarrow S$ is ∞ everywhere

 $LL \equiv Log-likelihood$

Almost *no classes* can be learned from just positive samples (Natarajan, STOC, 1987)

 $LL \equiv Log-likelihood$

Almost *no classes* can be learned from just positive samples (Natarajan, STOC, 1987)

Obtaining Unlabeled Samples

Obtaining Unlabeled Samples

Obtaining Unlabeled Samples

 $\mathcal{E}(\theta^*)$ and $\mathcal{E}(\theta_0)$ are *C*-close for $C = \text{poly}(1/\alpha)$:

for all sets $T \subseteq \mathbb{R}^d$, $e^{-C} \cdot \mathcal{E}(\theta_0; T) \leq \mathcal{E}(\theta^*; T) \leq e^C \cdot \mathcal{E}(\theta_0; T)^{1/C}$

Robustly Learning from Positive-Unlabeled Samples

 $\mathcal{E}(\theta^*)$ and $\mathcal{E}(\theta_0)$ are *C*-close for $C = \text{poly}(1/\alpha)$:

for all sets $T \subseteq \mathbb{R}^d$, $e^{-C} \cdot \mathcal{E}(\theta_0; T) \leq \mathcal{E}(\theta^*; T) \leq e^C \cdot \mathcal{E}(\theta_0; T)^{1/C}$

Robustly Learning from Positive-Unlabeled Samples

 $\mathcal{E}(\theta^*)$ and $\mathcal{E}(\theta_0)$ are *C*-close for $C = \text{poly}(1/\alpha)$:

for all sets $T \subseteq \mathbb{R}^d$, $e^{-C} \cdot \mathcal{E}(\theta_0; T) \leq \mathcal{E}(\theta^*; T) \leq e^C \cdot \mathcal{E}(\theta_0; T)^{1/C}$

Informal Theorem: \mathcal{H} can PAC-learned from

- *n* iid positive samples and
- *n* iid unlabeled samples from C-close to \mathcal{D}_X

for

$$n = \tilde{O}\left(\frac{1}{\varepsilon^{2+2C}} \cdot (\operatorname{VC}(\mathcal{H}) + \log \delta^{-1})\right)$$

Robustly Learning from Positive-Unlabeled Samples

 $\mathcal{E}(\theta^*)$ and $\mathcal{E}(\theta_0)$ are *C*-close for $C = \text{poly}(1/\alpha)$:

for all sets $T \subseteq \mathbb{R}^d$, $e^{-C} \cdot \mathcal{E}(\theta_0; T) \leq \mathcal{E}(\theta^*; T) \leq e^C \cdot \mathcal{E}(\theta_0; T)^{1/C}$

Informal Theorem: \mathcal{H} can PAC-learned from

- *n* iid positive samples and
- *n* iid unlabeled samples from C-close to \mathcal{D}_X

for

$$n = \tilde{O}\left(\frac{1}{\varepsilon^{2+2C}} \cdot (\operatorname{VC}(\mathcal{H}) + \log \delta^{-1})\right)$$

Algorithm: L_1 -Regression (*Kalai, Klivans, Mansour, Servedio, FOCS 2005*) L_1 -Regression whenever $\mathbf{1}_{S^*}(x)$ can be approximated by polynomials w.r.t. $\mathcal{E}(\theta^*)$

Algorithm: L_1 -Regression (*Kalai, Klivans, Mansour, Servedio, FOCS 2005*) L_1 -Regression whenever $\mathbf{1}_{S^*}(x)$ can be approximated by polynomials w.r.t. $\mathcal{E}(\theta^*)$

Algorithm: L_1 -Regression (*Kalai, Klivans, Mansour, Servedio, FOCS 2005*) L_1 -Regression whenever $\mathbf{1}_{S^*}(x)$ can be approximated by polynomials w.r.t. $\mathcal{E}(\theta^*)$

Most approximability results are known w.r.t. log-concave distributions

Most approximability results are known w.r.t. log-concave distributions

Distribution of positive samples
"Approximate" unlabeled distribution

Most approximability results are known w.r.t. log-concave distributions

Most approximability results are known w.r.t. log-concave distributions

Distribution of positive samples "Approximate" unlabeled distribution Log-concave bridge distribution \mathcal{B} Mixture constructed

Halfspaces

Moment-Based Method to learn halfspaces w.r.t. unknown Gaussian

Halfspaces

Moment-Based Method to learn halfspaces w.r.t. unknown Gaussian

 $\mathbb{E}_{x}[x] \quad \propto \quad \mu^{\star} + \mathbf{w}$

Halfspaces

Moment-Based Method to learn halfspaces w.r.t. unknown Gaussian

 $\mathbb{E}_{x}[x] \propto \mu^{\star} + w$ $Cov_{x}[x] \propto \Sigma^{\star} + ww^{\top}$

Halfspaces

Moment-Based Method to learn halfspaces w.r.t. unknown Gaussian

 $\mathbb{E}_{x}[x] \propto \mu^{\star} + w$ $\operatorname{Cov}_{x}[x] \propto \Sigma^{\star} + ww^{\top}$ $\mathbb{E}_{x}\left[\left(x - \mu_{x, S^{\star}}\right)^{\otimes 3}\right] \propto w^{\otimes 3}$

Halfspaces

Moment-Based Method to learn halfspaces w.r.t. unknown Gaussian

$$\mathbb{E}_{x}[x] \propto \mu^{\star} + w$$
$$\operatorname{Cov}_{x}[x] \propto \Sigma^{\star} + ww^{\intercal}$$
$$\mathbb{E}_{x}\left[\left(x - \mu_{x, S^{\star}}\right)^{\otimes 3}\right] \propto w^{\otimes 3}$$

Axis-Aligned Rectangle

Folklore Method to learning from only positive samples

New Results in Truncated Statistics with Unknown Truncation

New Results in Truncated Statistics with Unknown Truncation

• First efficient algorithm for general Gaussians (and beyond)

New Results in Truncated Statistics with Unknown Truncation

- First efficient algorithm for general Gaussians (and beyond)
- First efficient algorithm for truncated linear regression with Gaussian features

New Results in Truncated Statistics with Unknown Truncation

- First efficient algorithm for general Gaussians (and beyond)
- First efficient algorithm for truncated linear regression with Gaussian features
- First $poly(d/\varepsilon)$ algorithm for restricted truncation sets (e.g., halfspaces)

New Results in Truncated Statistics with Unknown Truncation

- First efficient algorithm for general Gaussians (and beyond)
- First efficient algorithm for truncated linear regression with Gaussian features
- First $poly(d/\varepsilon)$ algorithm for restricted truncation sets (e.g., halfspaces)

A reduction from learning with positive and "imperfect" unlabeled samples to agnostic learning

New Results in Truncated Statistics with Unknown Truncation

- First efficient algorithm for general Gaussians (and beyond)
- First efficient algorithm for truncated linear regression with Gaussian features
- First $poly(d/\varepsilon)$ algorithm for restricted truncation sets (e.g., halfspaces)

A reduction from learning with positive and "imperfect" unlabeled samples to agnostic learning

Open Problems:

New Results in Truncated Statistics with Unknown Truncation

- First efficient algorithm for general Gaussians (and beyond)
- First efficient algorithm for truncated linear regression with Gaussian features
- First $poly(d/\varepsilon)$ algorithm for restricted truncation sets (e.g., halfspaces)

A reduction from learning with positive and "imperfect" unlabeled samples to agnostic learning

Open Problems:

• $poly(d/\varepsilon)$ algorithm for other classes, e.g., intersections of (two) halfspaces

New Results in Truncated Statistics with Unknown Truncation

- First efficient algorithm for general Gaussians (and beyond)
- First efficient algorithm for truncated linear regression with Gaussian features
- First $poly(d/\varepsilon)$ algorithm for restricted truncation sets (e.g., halfspaces)

A reduction from learning with positive and "imperfect" unlabeled samples to agnostic learning

Open Problems:

- $poly(d/\varepsilon)$ algorithm for other classes, e.g., intersections of (two) halfspaces
- Truncated Linear regression with non-Gaussian features

New Results in Truncated Statistics with Unknown Truncation

- First efficient algorithm for general Gaussians (and beyond)
- First efficient algorithm for truncated linear regression with Gaussian features
- First $poly(d/\varepsilon)$ algorithm for restricted truncation sets (e.g., halfspaces)

A reduction from learning with positive and "imperfect" unlabeled samples to agnostic learning

Open Problems:

- $poly(d/\varepsilon)$ algorithm for other classes, e.g., intersections of (two) halfspaces
- Truncated Linear regression with non-Gaussian features
- Unknown truncation with weaker requirements than bounds on GSA
Summary and Open Problems

New Results in Truncated Statistics with Unknown Truncation

- First efficient algorithm for general Gaussians (and beyond)
- First efficient algorithm for truncated linear regression with Gaussian features
- First $poly(d/\varepsilon)$ algorithm for restricted truncation sets (e.g., halfspaces)

A reduction from learning with positive and "imperfect" unlabeled samples to agnostic learning

Open Problems:

- $poly(d/\varepsilon)$ algorithm for other classes, e.g., intersections of (two) halfspaces
- Truncated Linear regression with non-Gaussian features
- Unknown truncation with weaker requirements than bounds on GSA

Thank You!