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Truncation in Astronomy: Quasar Detection

Quasars are hard to detect! [Schafer, 2007]

Redshift

Lu
m

in
os

ity
Q: Were older quasars brighter? 

Too dim to measure

Confused with stars

Lack of survey data
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Survival set: 𝑆⋆ ⊆ ℝ𝑑  
The mass of 𝑆⋆ is at least ℰ 𝑆⋆; 𝜃⋆  = 𝛼 where 𝛼 is at least 1%

Samples observed from the truncated distribution 

ℰ 𝜃⋆, 𝑆⋆; 𝑥 =
𝟏𝑆⋆ 𝑥

𝛼
⋅ ℰ 𝜃⋆; 𝑥

Goal: Given 𝑥 ∼ ℰ 𝜽⋆, 𝑆⋆ ,        find 𝜽     such that    dTV ℰ 𝜽 , ℰ 𝜽⋆ ≤ 𝜀
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Prior Works

O(d2/ε2) algorithms with “known” S*

• Gaussians   Daskalakis, Gouleakis, Tzamos, and Zampetakis (FOCS 2018)

• Certain exponential families Lee, Wibisono, Zampetakis (NeurIPS 2023)
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Q1: Estimating general Gaussians with unknown S*? 

Q2: poly(d/ε) time estimation for halfspaces?
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Informal Theorem 1: In 𝑑poly Γ(𝑆⋆)/𝜀 time, we can find 𝜇, 𝛴 , s.t., with 99% probability

dTV 𝒩 𝜇, Σ , 𝒩 𝜇⋆, Σ⋆ ≤ 𝜀 .

Informal Theorem 2: Let S* be a halfspace or an axis-aligned box

In poly(d/ε) time, we can find 𝜇, Σ , s.t., with 99% probability

dTV 𝒩 𝜇, Σ , 𝒩 𝜇⋆, Σ⋆ ≤ 𝜀 .

Both results extend to truncated linear regression with Gaussian covariates with unknown S*
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Proof Outline

Challenge: LL with S* → S is ∞ everywhereChallenge: Only have samples inside S*

LL ≡ Log-likelihood

Almost no classes can be learned from just 
positive samples (Natarajan, STOC, 1987)

A new optimization program: 
Perturbed log-likelihood (PLL)

x

(1) Learn 𝑺 ≈ 𝑺⋆ (2) Learn 𝜃⋆ with access to 𝑺

Time: 𝑑poly Γ(𝑆⋆)/𝜀  or poly(d/ε) Time: poly(d/ε)
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Mixture constructed



Efficiently Learning S*: General Sets

Most approximability results are known w.r.t. log-concave distributions 

Log-concave bridge distribution ℬ
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Moment-Based Method to learn halfspaces w.r.t. unknown Gaussian

Folklore Method to learning from only positive samples

Halfspaces

Axis-Aligned Rectangle
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New Results in Truncated Statistics with Unknown Truncation

• First efficient algorithm for general Gaussians (and beyond)

• First efficient algorithm for truncated linear regression with Gaussian features

• First poly(d/ε) algorithm for restricted truncation sets (e.g., halfspaces)

A reduction from learning with positive and “imperfect” unlabeled samples to agnostic learning

Open Problems:

• poly(d/ε) algorithm for other classes, e.g., intersections of (two) halfspaces

• Truncated Linear regression with non-Gaussian features

• Unknown truncation with weaker requirements than bounds on GSA 

Thank You!
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