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From IPW Estimators via 
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Observational Studies 
Randomized control trials (RCTs) are more powerful but also more costly than observational studies 

Does interacting with a sales representative increase in the average amount spent on a hat?

Observations: 

1. treatments ti ∈ 0,1  and

2. outcomes yi(ti) ∈ 0,1

Treatments t ∈ 0,1  Average treatment effect 𝜏 ≔ 𝔼[ Y(1) – Y(0) ]

ti  =  ൝
1 with probability e(xi), 

0 with probability 1 – e(xi) 

x1 x2 xn

Goal: Given a desired confidence level α, find an estimate Ƹ𝜏 of 𝜏 with the smallest confidence interval

Covariates   x ∈ ℝ𝑑 Propensity score e(x) ∈ 0,1



IPW Estimators
Widely used family of estimators of the average treatment effect (ATE) 

• Economics (e.g., Dehejia and Wahba’98, Galiani, Gertler, Schargrodsky’05, Abadie and Imbens’06), 

• Medicine (e.g., Rubin’97, Christakis and Iwashyna’03, Austin’08), 

• Political Science (e.g., Brunell and Dinardo’04, Sekhon’04, Ho et al.’07)…

Given dataset 𝒟 ≔ 𝑥𝑖, 𝑦𝑖, 𝑡𝑖 𝑖=1
𝑛  and propensity scores 𝑒 𝑥 : ℝ𝑑 → 0,1 , the vanilla IPW estimator is

IPW 𝒟; 𝑒 =
1

𝑛


𝑖

𝑡𝑖𝑦𝑖

𝑒 𝑥𝑖
 −

1 − 𝑡𝑖 𝑦𝑖

1 − 𝑒 𝑥𝑖

IPW estimators have several desirable properties:

• Easy to describe, 

• computationally efficient,

• unbiased (under standard assumptions), 

• asymptotically normal 
For a fixed confidence level, 
confidence interval size ∝ RMSE (root-mean-squared error)



Issues with IPW Estimators 

IPW 𝒟; 𝑒 =
1

𝑛


𝑖

𝑡𝑖𝑦𝑖

𝑒 𝑥𝑖
 −

1 − 𝑡𝑖 𝑦𝑖

1 − 𝑒 𝑥𝑖

Issue 1: Inaccurate propensity scores

Given scores Ƹ𝑒(⋅) satisfying Ƹ𝑒 − 𝑒 ∞ ≤ 𝜀, bias 𝜏IPW 𝒟; Ƹ𝑒 − 𝜏  can be arbitrarily large! 

Issue 2: Outliers with extreme propensity scores

Var(IPW) ∝
1

𝑛
𝔼

1

𝑒 𝑥 1−𝑒 𝑥
 which goes to ∞ with extreme propensity scores (i.e., 𝑒 𝑥 → 0 or 1)

Question: Are there estimators with “small” confidence intervals in the presence of above issues?



Variants of Estimators to IPW
Doubly robust (DR) estimators (Foster and Syrgkanis’23, Chernozhukov et al.’18, Bang and Robins’05…)

• They reduce IPW estimator’s RMSE by combining it with 𝜇𝑡 𝑥 ≔ 𝔼 𝑌 𝑡  𝑋 = 𝑥] for each 𝑡 ∈ {0,1}

• Issue: RMSE of DR estimators can be arbitrarily large with outliers and inaccurate propensity scores!

Trimmed IPW estimator (Crump’09, Li, Thomas, and Li’19, …)

• IPW estimators which “remove” all 𝛽-outliers for some 𝛽 = Ω(1)

• Issue: Trimmed IPW estimator can have a bias of Ω 𝜌 +
1

𝛽𝑛
, where 𝜌 is the mass of the 𝛽-outliers
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Most existing variants of IPW estimators are data independent

Definition (Outliers). A covariate 𝑥 is a 𝛽-outlier if 𝑒 𝑥 ⋅ (1 − 𝑒 𝑥 ) < 𝛽

𝛽-outliers
⨉ Deleted points



A New Family of Coarse-IPW Estimators
• Defined as the IPW estimator on a “coarse” covariate space – where many covariates are merged

• Captures almost all existing variants of IPW estimators as special cases
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Definition (CIPW Estimators) Given a partition 𝒮 = 𝑆1, 𝑆2, … , 𝑁  of ℝ𝑑, a dataset 𝒟, and 
propensity scores 𝑒 ⋅ , the Coarse-IPW CIPW estimator is

CIPW𝒮,𝑁 𝒟; 𝑒 ≔
1

𝑖 ∈ 𝑛 : 𝑥𝑖 ∉ 𝑁
⋅ 

𝑆∈𝒮

 

𝑖:𝑥𝑖∈𝑆

𝑡𝑖𝑦𝑖

𝑒 𝑆
 −

1 − 𝑡𝑖 𝑦𝑖

1 − 𝑒 𝑆

where 𝑒 𝑆  is the average propensity score over set 𝑆



Assumptions on Data

• Lipschitzness holds under standard parametric assumptions, e.g., when 𝜇𝑡 𝑥 ≈ 𝑤⊤𝑥 

2 (Sparsity) For any ℓ2-ball of diameter > α at least Ω 1  fraction of covariates in the ball are not β outliers

• Sparsity and isolation are testable from data given estimates Ƹ𝑒 ⋅  of the propensity scores 𝑒 ⋅  

3 (Isolation) There are k ℓ2-balls of diameter > α which are pairwise Ω(α) far and that partition the outliers 

1 (Lipschitzness) The expected outcome under treatment t, conditioned on covariates, is L-Lipschitz, i.e., 

𝜇𝑡 𝑥 ≔ 𝔼 𝑌 𝑡  | 𝑋 = 𝑥  is L-Lipschitz for each t ∈ 0,1



Our Main Results

Theorem 1 (Informal). Suppose Assumptions 1-3 hold with constants 𝛼, 𝛽, 𝐿 and 𝛽-outliers have 
mass 𝜌. There is an algorithm that given

1. propensity scores Ƹ𝑒 with Ƹ𝑒 − 𝑒 ∞ ≤ 𝜀, and  

2. n = Ω(𝑑/𝜀2) independent samples,

outputs a value 𝜏𝐴 in 𝑂 𝑛3  time such that 𝔼 𝜏 − 𝜏𝐴
2 1/2 = 𝑂 𝜀 + 𝛼𝜌𝐿 +

1

𝑛
 

Theorem 2 (Informal). For each 𝜂 > 0 there is an example satisfying Assumptions 1-3 where

1. The RMSE of IPW and doubly robust estimators is Ω 1/𝜂

2. The RMSE of 𝜀-Trimmed IPW estimator is Ω 1

3. The RMSE of the CIPW estimator in Theorem 1 is 𝑂 𝜀 + 1/ 𝑛

Comparison to baseline estimators

RMSE guarantee of CIPW estimators



Finding CIPW Estimator with Small RMSE

Proposition 1 (Informal). Given dataset 𝒟 and propensity scores 𝑒 ⋅ , it is NP-hard to find the 
minimum RMSE of a CIPW estimator on the dataset

In fact, it is NP-hard to approximate it within any exponential-in-bit-complexity factor

Computational hardness results

Since finding the best CIPW estimator is hard, we focus on finding a “good” CIPW estimator

Bias CIPW𝒮,𝑁  ≤  Pr 𝑥 ∈ 𝑁 +
𝑂(𝐿)

Pr 𝑥∉𝑁
⋅ σ𝑆∈𝒮 diam 𝑆 ⋅ Pr[𝑥 ∈ 𝑆],

  Var CIPW𝒮,𝑁  ≤  
1

𝑛
⋅

1

Pr 𝑥∉𝑁
⋅ σ𝑆∈𝒮

Pr[𝑥∈𝑆]

𝑒 𝑠 1−𝑒 𝑆
. 

Definition (Good-local partition). A partition is (𝛼, 𝛽)-good-local if (i) Pr 𝑥 ∈ 𝑁 ≤ 𝛼, (ii) for each 
𝑆 ∈ 𝒮, 𝑒 𝑆 1 − 𝑒 𝑆 ≥ 𝛽 and diam 𝑆 ≤ 𝛼

Proposition (Informal). Suppose 𝑂 1 -Lipschitzness holds. Any CIPW estimator defined by an 

(𝛼, 𝛽)-good-local partition has RMSE ≤ 𝑂 𝛼 +
𝜀

𝛽
 



Additional Challenges
If propensity scores 𝑒(⋅) were exactly known: 

𝛽-outliers

Coarse covariates

Since 𝑒(⋅) are learned from data and affect “coarsening” (𝒮, 𝑁), the learned (𝒮, 𝑁) must generalize

Coarse covariates with small VC-dim

Since 𝑒(⋅) are learned from data has errors, the learned coarse covariates must have “margin”

The complete algorithm overcomes a few other challenges, e.g., uses fractional (𝒮, 𝑁) to reduce RMSE further



Conclusion
(Downsides of IPW) Confidence intervals arising from IPW Estimators can be arbitrarily poor with 

1. Inaccuracies in propensity scores, and

2. Outliers (with propensity scores close to 0 or 1)

(CIPW Estimators) We introduce a family of Coarse IPW (CIPW) estimators which captures IPW estimators

(Main algorithmic result) We give an algorithm for data-dependent coarsening such that the resulting 
CIPW estimator has smaller confidence intervals than IPW Estimators with (1) inaccuracies and (2) outliers

(Further results) We explore the statistical and computational complexity of finding CIPW estimators with 
“small” confidence intervals 
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