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Abstract

This paper describes a testing methodology  for quantitatively assessing the risk that 
rare or unique training-data sequences ( secrets)  are unintentionally memorized  
by generative sequence models—a common type of machine-learning model…(think 
ChatGPT)



Abstract

This paper describes a testing methodology  for quantitatively assessing the risk that rare or  
unique training-data sequences (secrets)  are unintentionally memorized  by generative 
sequence models—a common type of machine-learning model…(think ChatGPT)

“Machine learning must involve some form of memorization [...] furthermore, the output of trained neural 
networks is known to strongly suggest what training data was used [...] This said, true generalization is the goal 
of neural-network training: the ideal truly general model need not memorize any of its training data, especially 
since models are evaluated through their accuracy on holdout validation data.”

“Unintended memorization  occurs when trained neural networks may reveal the presence of 
out-of-distribution training data —i.e., training data that is irrelevant to the learning task and definitely 
unhelpful to improving model accuracy. Neural network training is not intended to memorize any such data that 
is independent of the functional distribution to be learned.”



Abstract (continued)

This paper describes a testing methodology  for quantitatively assessing the risk that 
rare or unique training-data  sequences are unintentionally memorized  by 
generative sequence models —a common type of machine-learning model. Because 
such models are sometimes trained on sensitive data  (e.g., the text of users’ private  
messages) , this methodology can benefit privacy  by allowing deep-learning 
practitioners to select  means of training that minimize such memorization. 



Smart Compose

Smart Compose is a LSTM recurrent neural 
network trained on a text corpus comprising of 
the personal emails of millions of users . This 
model has been commercially deployed  for the 
purpose of predicting sentence completion in 
email composition . The model is in current 
active use by millions of users , each of which 
receives predictions drawn not (only) from their 
own emails, but the emails of all the users’ in 
the training corpus. 



Threat Model 

Chat-GPT

Malevolent/curious user

● can query the model many 
times!

● has access to the model’s 
logits i.e. 

p(next token|given all tokens)

● and can check whether each 
completion is true!
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Threat Model 

Chat-GPT

10^8 -> 10^3

Malevolent/curious user

● can query the model many 
times!

● has access to the model’s 
logits i.e. 

p(next token|given all tokens)

● and can check whether each 
completion is true!



Abstract (continued)

This paper describes a testing methodology  for quantitatively assessing the risk that rare or  
unique training-data  sequences are unintentionally memorized  by generative sequence 
models—a common type of machine-learning model. Because such models are sometimes 
trained on sensitive data  (e.g., the text of users’ private messages), this methodology can 
benefit privacy  by allowing deep-learning practitioners to select  means of training that 
minimize such memorization. In experiments, we show that unintended memorization is a 
persistent, hard-to-avoid issue  that can have serious consequences. Specifically, for models 
trained without consideration of memorization, we describe new, efficient procedures that  
can extract  unique, secret sequences, such as credit card numbers. We show that our testing 
strategy is a practical and easy-to-use first line of defense, e.g., by describing its application to 
quantitatively limit data exposure in Google’s Smart Compose, a commercial text-completion 
neural network trained on millions of users’ email messages.



Measuring Unintended Memorization

the random number is [uniformly random 8-digit number]

canary



Measuring Unintended Memorization: Metric?
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Measuring Unintended Memorization: Metric?

“However, whether the log-perplexity value is high or low 
depends heavily on the specific model, application, or 
dataset…”



What’s the naive strategy?

Chat-GPT

Having no information, 
you just iterate through 
all 9-digit numbers. 

If there are |R| such 
options, on average, 
you would get the 
canary in |R|/2 tries.

 



What’s the naive strategy?

Chat-GPT

Having no information, 
you just iterate through 
all 9-digit numbers. 

If there are |R| such 
options, on average, 
you would get the 
canary in |R|/2 tries.

 

If you have the logits, you could do following

(there are probably better ways doing this but this a way)



Exposure  metric
R: All possible random sequences we 

could have inserted

Rank is useful but computationally 
expensive



Exposure  metric
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Exposure  metric
(2) not a normalized metric (depends on |R|): “This characteristic 
of exposure values serves to emphasize how it can be more damaging 
to reveal a unique secret when it is but one out of a vast number of 
possible secrets (and, conversely, how guessing one out of a 
few-dozen, easily enumerated secrets may be less concerning).”

(1) 0 ≤ exposure ≤ log|R|  (max=log|R| for the most-likely, 
top-ranked canary; min=0 for the least likely. Across 
possibly-inserted canaries, the median=1.)



Then, 

where S << R. “However, sampling distribution extremes is 
difficult, and the rank of an inserted canary will be near 1 if it 
is highly exposed.”

Efficiently Approximating Exposure
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Efficiently Approximating Exposure

What are these parameters? 



 Exposure-Based Testing Methodology

1. Generate canary 
a. (Not necessarily number, could be words (e.g., “correct horse battery staple”) 

for word-level language models….)
2. Insert canary into training data

a. (a varying number of time until some signal emerges)
3. Train model
4. Compute exposure of canary

a. Compare likelihood to other candidates



 Exposure-Based Testing Methodology: Tool  

“enables practitioners to 
choose model-training 
approaches that best 
protect privacy….”



 Exposure-Based Testing Methodology: Tool  

“This could help us give a limit on the 
amount of information drawn from any 
small set of users…”

|R | ≈ 2 ^30



How does memorization progress during training?



“Taken together, these results are intriguing. They indicate that unintended 
memorization seems to be a necessary  component of training : 

● exposure increases when the model is learning, (left) 
● and does not when the model is not. (right) 

This result confirms one of the findings of Tishby and Schwartz-Ziv and 
Zhang et al., who argue that neural networks first learn to minimize the loss 
on the training data by memorizing it.”



“Taken together, these results are intriguing. They indicate that unintended 
memorization seems to be a necessary  component of training : 

● exposure increases when the model is learning, (left) 
● and does not when the model is not. (right) 

This result confirms one of the findings of Tishby and Schwartz-Ziv and 
Zhang et al., who argue that neural networks first learn to minimize the loss 
on the training data by memorizing it.”

→ Memorization is inevitable. 

(But I think  this is not surprising because the kind of data they are evaluating 
is out-of-distribution …so the model learning something general out of this 
“secret” data instead of memorizing it would be the surprising behavior)  



Inefficient Extraction Algorithm

Suppose there is exposure. How to extract the secret?

 

If you have the logits, you could do following

(there are probably better ways doing this but this a way)



Efficient Extraction Algorithm

● Goal:  recover lowest-perplexity secret
● Reformulation: build prefix tree; edge 

cost = −log₂ Pr(token | prefix).
● Search: priority-queue (Dijkstra-style) 

expands (i.e. push its children with 
updated costs) lowest-cost prefixes until 
full length.

● GPU batching: pop many nodes → 
single batched forward pass (huge 
speedup)→ The first leaf node found is 
not always the best→continue a few 
extra rounds, rescore, keep best 
sequence.



Efficient Extraction Algorithm

● Goal:  recover lowest-perplexity secret 
Reformulation: build prefix tree; 
edge cost = −log₂ Pr(token | prefix).

● Search: priority-queue 
(Dijkstra-style) expands lowest-cost 
prefixes.

● GPU batching: pop many nodes → 
single batched forward pass (huge 
speedup)

● Results: enumerates ~10³–10⁵× fewer 
candidates than brute force; succeeds 
when exposure is high.



 High Exposure implies Extraction



Preventing Unintended Memorization

1. Regularization (does not help!) maybe expected because the problem is not overtraining…
a. Weight Decay
b. Dropout
c. Quantization (e.g. force each weight to be one of only N different values)

2. Sanitization (possible but hard to do)
3. Differential Privacy (works!)



Differential Privacy

● If dataset D includes one secret x, and D′ = D − {x}, then models trained with DP-SGD on D and D′ are 
nearly identical.
○ DP‑SGD has per‑example gradient clipping and added Gaussian noise

● Individual records (like secrets) have minimal influence → model cannot memorize them 
completely!

● Training is ~10–100× slower  than standard + test loss  within ~10% of non‑DP baseline



Discussion

They mentioned:

● Other ML models , such as image classifiers?
● What if we have oracle access to less ? For example, just most likely (arg max) output.
● What if we have oracle access to more ? (the actual weights and internal activations of 

the neural network…)

My question(s): 

● Is rare, unique, out of distribution data the best way to characterize secrets? 
● How to prevent from memorizing in-distribution secrets? 
● How to improve privacy-training time-test loss trade-off?



Thank you!


