
The Secret Sharer: Evaluating and Testing
Unintended Memorization in Neural

Networks

Senem Işık

Nicholas Carlini (Google Brain), Chang Liu (UC Berkeley), Úlfar
Erlingsson (Google Brain), Jernej Kos (National University of
Singapore), Dawn Song (UC Berkeley)

Abstract

This paper describes a testing methodology for quantitatively assessing the risk that
rare or unique training-data sequences (secrets) are unintentionally memorized
by generative sequence models—a common type of machine-learning model…(think
ChatGPT)

Abstract

This paper describes a testing methodology for quantitatively assessing the risk that rare or
unique training-data sequences (secrets) are unintentionally memorized by generative
sequence models—a common type of machine-learning model…(think ChatGPT)

“Machine learning must involve some form of memorization [...] furthermore, the output of trained neural
networks is known to strongly suggest what training data was used [...] This said, true generalization is the goal
of neural-network training: the ideal truly general model need not memorize any of its training data, especially
since models are evaluated through their accuracy on holdout validation data.”

“Unintended memorization occurs when trained neural networks may reveal the presence of
out-of-distribution training data —i.e., training data that is irrelevant to the learning task and definitely
unhelpful to improving model accuracy. Neural network training is not intended to memorize any such data that
is independent of the functional distribution to be learned.”

Abstract (continued)

This paper describes a testing methodology for quantitatively assessing the risk that
rare or unique training-data sequences are unintentionally memorized by
generative sequence models —a common type of machine-learning model. Because
such models are sometimes trained on sensitive data (e.g., the text of users’ private
messages) , this methodology can benefit privacy by allowing deep-learning
practitioners to select means of training that minimize such memorization.

Smart Compose

Smart Compose is a LSTM recurrent neural
network trained on a text corpus comprising of
the personal emails of millions of users . This
model has been commercially deployed for the
purpose of predicting sentence completion in
email composition . The model is in current
active use by millions of users , each of which
receives predictions drawn not (only) from their
own emails, but the emails of all the users’ in
the training corpus.

Threat Model

Chat-GPT

Malevolent/curious user

● can query the model many
times!

● has access to the model’s
logits i.e.

p(next token|given all tokens)

● and can check whether each
completion is true!

Senem’s SSN no is
6 7 8–4 5 –5 5 3 2

vs.
Senem’s SSN no is
6 7 8–4 5 –5 5 3 2

Threat Model

Chat-GPT

10^8 -> 10^3

Malevolent/curious user

● can query the model many
times!

● has access to the model’s
logits i.e.

p(next token|given all tokens)

● and can check whether each
completion is true!

Abstract (continued)

This paper describes a testing methodology for quantitatively assessing the risk that rare or
unique training-data sequences are unintentionally memorized by generative sequence
models—a common type of machine-learning model. Because such models are sometimes
trained on sensitive data (e.g., the text of users’ private messages), this methodology can
benefit privacy by allowing deep-learning practitioners to select means of training that
minimize such memorization. In experiments, we show that unintended memorization is a
persistent, hard-to-avoid issue that can have serious consequences. Specifically, for models
trained without consideration of memorization, we describe new, efficient procedures that
can extract unique, secret sequences, such as credit card numbers. We show that our testing
strategy is a practical and easy-to-use first line of defense, e.g., by describing its application to
quantitatively limit data exposure in Google’s Smart Compose, a commercial text-completion
neural network trained on millions of users’ email messages.

Measuring Unintended Memorization

the random number is [uniformly random 8-digit number]

canary

Measuring Unintended Memorization: Metric?

Measuring Unintended Memorization: Metric?

Measuring Unintended Memorization: Metric?

“However, whether the log-perplexity value is high or low
depends heavily on the specific model, application, or
dataset…”

What’s the naive strategy?

Chat-GPT

Having no information,
you just iterate through
all 9-digit numbers.

If there are |R| such
options, on average,
you would get the
canary in |R|/2 tries.

What’s the naive strategy?

Chat-GPT

Having no information,
you just iterate through
all 9-digit numbers.

If there are |R| such
options, on average,
you would get the
canary in |R|/2 tries.

If you have the logits, you could do following

(there are probably better ways doing this but this a way)

Exposure metric
R: All possible random sequences we

could have inserted

Rank is useful but computationally
expensive

Exposure metric

Exposure metric

Exposure metric
(2) not a normalized metric (depends on |R|): “This characteristic
of exposure values serves to emphasize how it can be more damaging
to reveal a unique secret when it is but one out of a vast number of
possible secrets (and, conversely, how guessing one out of a
few-dozen, easily enumerated secrets may be less concerning).”

(1) 0 ≤ exposure ≤ log|R| (max=log|R| for the most-likely,
top-ranked canary; min=0 for the least likely. Across
possibly-inserted canaries, the median=1.)

Then,

where S << R. “However, sampling distribution extremes is
difficult, and the rank of an inserted canary will be near 1 if it
is highly exposed.”

Efficiently Approximating Exposure

Efficiently Approximating Exposure

Efficiently Approximating Exposure

What are these parameters?

 Exposure-Based Testing Methodology

1. Generate canary
a. (Not necessarily number, could be words (e.g., “correct horse battery staple”)

for word-level language models….)
2. Insert canary into training data

a. (a varying number of time until some signal emerges)
3. Train model
4. Compute exposure of canary

a. Compare likelihood to other candidates

 Exposure-Based Testing Methodology: Tool

“enables practitioners to
choose model-training
approaches that best
protect privacy….”

 Exposure-Based Testing Methodology: Tool

“This could help us give a limit on the
amount of information drawn from any
small set of users…”

|R | ≈ 2 ^30

How does memorization progress during training?

“Taken together, these results are intriguing. They indicate that unintended
memorization seems to be a necessary component of training :

● exposure increases when the model is learning, (left)
● and does not when the model is not. (right)

This result confirms one of the findings of Tishby and Schwartz-Ziv and
Zhang et al., who argue that neural networks first learn to minimize the loss
on the training data by memorizing it.”

“Taken together, these results are intriguing. They indicate that unintended
memorization seems to be a necessary component of training :

● exposure increases when the model is learning, (left)
● and does not when the model is not. (right)

This result confirms one of the findings of Tishby and Schwartz-Ziv and
Zhang et al., who argue that neural networks first learn to minimize the loss
on the training data by memorizing it.”

→ Memorization is inevitable.

(But I think this is not surprising because the kind of data they are evaluating
is out-of-distribution …so the model learning something general out of this
“secret” data instead of memorizing it would be the surprising behavior)

Inefficient Extraction Algorithm

Suppose there is exposure. How to extract the secret?

If you have the logits, you could do following

(there are probably better ways doing this but this a way)

Efficient Extraction Algorithm

● Goal: recover lowest-perplexity secret
● Reformulation: build prefix tree; edge

cost = −log₂ Pr(token | prefix).
● Search: priority-queue (Dijkstra-style)

expands (i.e. push its children with
updated costs) lowest-cost prefixes until
full length.

● GPU batching: pop many nodes →
single batched forward pass (huge
speedup)→ The first leaf node found is
not always the best→continue a few
extra rounds, rescore, keep best
sequence.

Efficient Extraction Algorithm

● Goal: recover lowest-perplexity secret
Reformulation: build prefix tree;
edge cost = −log₂ Pr(token | prefix).

● Search: priority-queue
(Dijkstra-style) expands lowest-cost
prefixes.

● GPU batching: pop many nodes →
single batched forward pass (huge
speedup)

● Results: enumerates ~10³–10⁵× fewer
candidates than brute force; succeeds
when exposure is high.

 High Exposure implies Extraction

Preventing Unintended Memorization

1. Regularization (does not help!) maybe expected because the problem is not overtraining…
a. Weight Decay
b. Dropout
c. Quantization (e.g. force each weight to be one of only N different values)

2. Sanitization (possible but hard to do)
3. Differential Privacy (works!)

Differential Privacy

● If dataset D includes one secret x, and D′ = D − {x}, then models trained with DP-SGD on D and D′ are
nearly identical.
○ DP‑SGD has per‑example gradient clipping and added Gaussian noise

● Individual records (like secrets) have minimal influence → model cannot memorize them
completely!

● Training is ~10–100× slower than standard + test loss within ~10% of non‑DP baseline

Discussion

They mentioned:

● Other ML models , such as image classifiers?
● What if we have oracle access to less ? For example, just most likely (arg max) output.
● What if we have oracle access to more ? (the actual weights and internal activations of

the neural network…)

My question(s):

● Is rare, unique, out of distribution data the best way to characterize secrets?
● How to prevent from memorizing in-distribution secrets?
● How to improve privacy-training time-test loss trade-off?

Thank you!

