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Abstract

This paper describes a testing methodology for quantitatively assessing the risk that rare or
unique training-data sequences (secrets) are unintentionally memorized by generative
sequence models—a common type of machine-learning model...(think ChatGPT)

“Machine learning must involve some form of memorization [..] furthermore, the output of trained neural
networks is known to strongly suggest what training data was used [..] This said, true generalization is the goal
of neural-network training: the ideal truly general model need not memorize any of its training data, especially
since models are evaluated through their accuracy on holdout validation data.”

“Unintended memorization occurs when trained neural networks may reveal the presence of
out-of-distribution training data —i.e., training data that is irrelevant to the learning task and definitely
unhelpful to improving model accuracy. Neural network training is not intended to memorize any such data that

is independent of the functional distribution to be learned.”



Abstract (continued)

This paper describes a

a common type of machine-learning model. Because




Smart Compose is a LSTM recurrent neural
network trained on a text corpus comprising of
the personal emails of millions of users . This
model has been commercially deployed for the
purpose of predicting sentence completion in
email composition . The model is in current
active use by millions of users , each of which
receives predictions drawn not (only) from their
own emails, but the emails of all the users’ in
the training corpus.

LONG UVE THE REVOLUTION.
OUR NEXT MEETING WILL BE
AT

AHA, FOUND THEM!

WHEN YOU TRAIN PREDICTIVE MODELS
ON INPUT FROM YOUR USERS, IT CAN

EAK INFORMATION IN UNEXPECTED WLAY¢



Threat Model

Malevolent/curious user

® can query the model many
times!

® has access to the model’s
logits ie.

p(next token|given all tokens)

e and can check whether each

completion is true!
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Abstract (continued)

This paper describes a testing methodology " for quantitatively assessing the risk that rare or
a common type of machine-learning model. Because such models are sometimes

that can have serious consequences. Specifically, for models

can extract unique, secret sequences, such as credit card numbers| We show that our testing

strategy is a practical and easy-to-use first line of defense, e.g., by describing its application to
quantitatively limit data exposure in Google’s Smart Compose, a commercial text-completion
neural network trained on millions of users’ email messages.




Measuring Unintended Memorization

the random number is [uniformly random 8-digit number]



Measuring Unintended Memorization: Metric?

Definition 1 The log-perplexity of a sequence x is

Pxg(x1...x,) = —log, Pr(xi...x,|fe)

n

— ¥ (~torsPrll o)

i=1

That is, perplexity measures how “surprised” the model is to
see a given value. A higher perplexity indicates the model is
“more surprised” by the sequence. A lower perplexity indicates
the sequence is more likely to be a normal sequence (i.e.,
perplexity is inversely correlated with likelihood).



Measuring Unintended Memorization: Metric?

Highest Likelihood Sequences Log-Perplexity
Definition 1 The log-perplexity of a sequence x is :

The random number is 281265017 14.63
Pxg(x1...x,) = —log,Pr(xi...x,|fe) The random number is 281265117 18.56
R 15 Prls . The random number is 281265011 19.01
= l; — log, Pr(x;| fo(x1.-Xi—1)) The random number is 286265117 20.65
The random number is 528126501 20.88
That is, perplexity measures how “surprised” the model is to The random number:is 281266511 20.99

see a given value. A higher perplexity indicates the model is ; '
“more surprised” by the sequence. A lower perplexity indicates Therandom number %S 287265017 20.99
the sequence is more likely to be a normal sequence (i.e., The random number %s 281265111 21.16
The random number is 281265010 21.36

perplexity is inversely correlated with likelihood).

Table 1: Possible sequences sorted by Log-Perplexity. The
inserted canary— 281265017—has the lowest log-perplexity.
The remaining most-likely phrases are all slightly-modified
variants, a small edit distance away from the canary phrase.



Measuring Unintended Memorization: Metric?

Highest Likelihood Sequences Log-Perplexity
Definition 1 The log-perplexity of a sequence x is :

The random number is 281265017 14.63
Pxg(x1...x,) = —log,Pr(xi...x,|fe) The random number is 281265117 18.56
R 15 Prls . The random number is 281265011 19.01
= ;;1 — log, Pr(x;| fo(x1.-Xi—1)) The random number is 286265117 20.65
The random number is 528126501 20.88
That is, perplexity measures how “surprised” the model is to The random number:is 281266511 20.99

see a given value. A higher perplexity indicates the model is ; '
“more surprised” by the sequence. A lower perplexity indicates Thexandom:numbes %S 287265017 20.99
the sequence is more likely to be a normal sequence (i.e., The random number %s 281265111 21.16
The random number is 281265010 21.36

perplexity is inversely correlated with likelihood).

Table 1: Possible sequences sorted by Log-Perplexity. The
“However, whether the log-perplexity value is high or low inserted canary— 281265017—has the lowest log-perplexity.
depends heavily on the specific model, application, or The remaining most-likely phrases are all slightly-modified
dataset...” variants, a small edit distance away from the canary phrase.



What's the naive strategy?

Having no information,
you just iterate through
all 9-digit numbers.

If there are |R| such
options, on average,
you would get the

canary in |R|/2 tries.

Chat-GPT




What S the naive Strategy? If you have the logits, you could do following

HaVlng no lnformatlon, Highest Likelihood Sequences Log-Perplexity
you ] ust iterate through The random number is 281265017 14.63
The random number is 281265117 18.56

all 9_dlg1t numbers. The random number is 281265011 19.01
The random number is 286265117 20.65

The random number is 528126501 20.88

The random number is 281266511 20.99

If there are IRI SUCh The random number is 287265017 20.99
1 The random number is 281265111 21.16
Optlons’ on average’ The random number is 281265010 21.36

you would get the

Table 1: Possible sequences sorted by Log-Perplexity. The
inserted canary— 281265017—has the lowest log-perplexity.
The remaining most-likely phrases are all slightly-modified
variants, a small edit distance away from the canary phrase.

canary in |R|/2 tries.

(there are probably better ways doing this but this a way)

Chat-GPT




Exposure metric

Definition 2 The rank of a canary s|r| is Highest Likelihood Sequences Log-Perplexity
rankg (s[r]) = |{r' € R : Pxg(s[r']) < Pxe( s[r])}‘ The random number is 281265017 14.63

The random number is 281265117 18.56

That is, the rank of a specific, instantiated canary is its index The random number is 281265011 19.01
in the list of all possibly-instantiated canaries, ordered by the The random number is 286265117 20.65
empirical model perplexity of all those sequences. The random number is 528126501 20.88
_ _ The random number is 281266511 20.99

5};‘;5&;““ but computationally The random number is 287265017 20.99

The random number is 281265111 21.16

The random number is 281265010 21.36

Table 1: Possible sequences sorted by Log-Perplexity. The
inserted canary— 281265017—nhas the lowest log-perplexity.
The remaining most-likely phrases are all slightly-modified
variants, a small edit distance away from the canary phrase.



Exposure metric

Definition 2 The rank of a canary s|r| is
ranko (s[r]) = [{r' € R : Pxq(s[r']) < Pxq(s[r])}|
That is, the rank of a specific, instantiated canary is its index

in the list of all possibly-instantiated canaries, ordered by the
empirical model perplexity of all those sequences.

E(s[r])

E(s[|fo)

31R|
rankg(s|r])




Exposure metric

Definition 2 The rank of a canary s|r| is

ranko (s[r]) = [{r' € R : Pxq(s[r']) < Pxq(s[r])}| E(S[r]) _ % |K'|
That is, the rank of ific, i iated i its ind -
e e E6U11f) - ranke(sTr)

empirical model perplexity of all those sequences.

Definition 4 Given a canary s[r|, a model with parameters
0, and the randomness space R, the exposure of sr| is

exposureg(s[r]) = log, | R | —log, rankg(s[r])



(2) not a normalized metric (depends on |R|): “This characteristic
of exposure values serves to emphasize how it can be more damaging

ExPOsure metric to reveal a unique secret when it is but one out of a vast number of

possible secrets (and, conversely, how guessing one out of a
few-dozen, easily enumerated secrets may be less concerning).”

Definition 2 The rank of a canary s[r| is
ranko(s[r]) = | {7’ € R : Pxo(s[7']) < Pxo(slr])}| E(s[r]) %|R|
That is, the rank of a specific, instantiated canary is its index E (S [r] | fe) o ranke (S [r] )

in the list of all possibly-instantiated canaries, ordered by the
empirical model perplexity of all those sequences.

Definition 4 Given a canary s[r|, a model with parameters
0, and the randomness space R, the exposure of sr| is

exposureg(s|r]) = log, | R | —log, rankg(s[r|)

(1) 0 < exposure <log|R| (max=log|R] for the most-likely,
top-ranked canary; min=0 for the least likely. Across
possibly-inserted canaries, the median=1.)



Efficiently Approximating Exposure

Definition 4 Given a canary s[r]|, a model with parameters
0, and the randomness space R, the exposure of s[r] is

exposureg(s[r]) = log, |R | —log, rankg(s[r])

Then,
exposureg(s(r]) = —log, tle)g( [(Pxe (s[t]) < Pxg (s[r]))]

exposureg(s[r]) ~ —logztle’g~ [(Pxe (s[t]) < Pxg(s[r ]))]

where S <<R. “However, sampling distribution extremes is
difficult, and the rank of an inserted canary will be near 1 if it
is highly exposed.”



Skew-normal
- density function
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Efficiently Approximating Exposure
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w
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Definition 4 Given a canary s[r], a model with parameter n
0, and the randomness space R, the exposure of s[r| is N , .
50 100 150 200
exposureg (s[r]) — 10g2 |R| _ 10g2 ranke(s[r]) Log-Perplexity of candidate s[r]

Figure 3: Skew normal fit to the measured perplexity distri-
bution. The dotted line indicates the log-perplexity of the

— & inserted canary s[7], which is more likely (i.e., has lower per-
€Xposurey (S[r]) log, tg}l‘( [(PX@ (S [t]) < Pxo (s[r] )) plexity) than any other candidate canary s[r’'].

In this work, we use a skew-normal distribution [40] with
Pxg(s[r]) mean , standard deviation 62, and skew o to model the distri-
exposureg ( s[r]) ~ —log, / p( x) dx bution p. Figure 3 shows a histogram of the log-perplexity of
0 all 10° different possible canaries from our prior experiment,
overlaid with the skew-normal distribution in dashed red.
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Definition 4 Given a canary s[r], a model with parameter
0, and the randomness space R, the exposure of s[r| is

50 100 15(;‘ Z(I)O
exposureg (s [r]) — 10g2 |R| — 10g2 ranke(s[r]) Log-Perplexity of candidate s[r]

Figure 3: Skew normal fit to the measured perplexity distri-
bution. The dotted line indicates the log-perplexity of the

— & inserted canary s[7], which is more likely (i.e., has lower per-
€Xposurey (S[r]) log, tIe,gll‘( [(PXB (S [t]) < Pxo (s[r] )) plexity) than any other candidate canary s[r’'].

In this work, we use a skew-normal distribution [40] with
Pxg(s[r]) mean , standard deviation 62, and skew o to model the distri-
exposureg ( s [r]) ~ —log, / p( x) dx bution p. Figure 3 shows a histogram of the log-perplexity of
0 all 10° different possible canaries from our prior experiment,

overlaid with the skew-normal distribution in dashed red.

What are these parameters?



Generate canary
a. (Not necessarily number, could be words (e.g., “correct horse battery staple”)
for word-level language models....)

Insert canary into training data

a. (avarying number of time until some signal emerges)
Train model

Compute exposure of canary
a. Compare likelihood to other candidates



304 —— Hyperparameters A
—— Hyperparameters B

0 2 4 6 8
Repetitions of canary in training data

Canary exposure in trained model

Figure 1: Results of our testing methodology applied to a state-
of-the-art, word-level neural-network language model [35].
Two models are trained to near-identical accuracy using two
different training strategies (hyperparameters A and B). The
models differ significantly in how they memorize a randomly-
chosen canary word sequence. Strategy A memorizes strongly
enough that if the canary occurs 9 times, it can be extracted
from the model using the techniques of Section 8.

‘enables practitioners to
choose model-training
approaches that best
protect privacy...”
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Figure 5: The results of applying our testing methodology to a
word-level language model [35] inserting a canary five times.
An exposure of 144 indicates extraction should be possible.
We train many models each with different hyperparameters
and find vast differences in the level of memorization. The
highest utility model memorizes the canary to such a degree
it can be extracted. Other models that reach similar utility
exhibit less memorization. A practitioner would prefer one of
the models on the Pareto frontier, which we highlight.
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Figure 4: Exposure plot for our commercial word-level lan-
guage model. Even with a canary inserted 10,000 times, ex-
posure reaches only 10: the model is 1,000 x more likely to
generate this canary than another (random) possible phrase,
but it is still not a very likely output, let alone the most likely.

“This could help us give a limit on the
amount of information drawn from any
small set of users...”

IR[=2730



How does memorization progress during training?
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Figure 7: Exposure as a function of training time. The expo-
sure spikes after the first mini-batch of each epoch (which
contains the artificially inserted canary), and then falls overall
during the mini-batches that do not contain it.
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Figure 8: Comparing training and testing loss to exposure
across epochs on 5% of the PTB dataset . Testing loss reaches
aminimum at 10 epochs, after which the model begins to over-
fit (as seen by training loss continuing to decrease). Exposure
also peaks at this point, and decreases afterwards.



Exposure

“Taken together, these results are intriguing. They indicate that unintended
memorization seems to be a necessary component of training :

e exposure increases when the model is learning,  (left)
e and does not when the model is not. (right)

This result confirms one of the findings of Tishby and Schwartz-Ziv and
Zhang et al, who argue that neural networks first learn to minimize the loss
on the training data by memorizing it.”
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“Taken together, these results are intriguing. They indicate that unintended
memorization seems to be a necessary component of training :

e exposure increases when the model is learning,  (left)
e and does not when the model is not. (right)

This result confirms one of the findings of Tishby and Schwartz-Ziv and
Zhang et al, who argue that neural networks first learn to minimize the loss
on the training data by memorizing it.”

— Memorization is inevitable.

(But I think this is not surprising because the kind of data they are evaluating
is out-of-distribution ...so the model learning something general out of this
“secret” data instead of memorizing it would be the surprising behavior)



I_neff]-Clent EXtraCtlon Algorlthm If you have the logits, you could do following

Suppose there is exposure. How to extract the secret? Tighest Likelihood Sequences TozPerplesity
The random number is 281265017 14.63
The random number is 281265117 18.56
The random number is 281265011 19.01
The random number is 286265117 20.65
The random number is 528126501 20.88
The random number is 281266511 20.99
The random number is 287265017 20.99
The random number is 281265111 21.16
The random number is 281265010 21.36

Table 1: Possible sequences sorted by Log-Perplexity. The
inserted canary— 281265017—has the lowest log-perplexity.
The remaining most-likely phrases are all slightly-modified
variants, a small edit distance away from the canary phrase.

(there are probably better ways doing this but this a way)



Efficient Extraction Algorithm

Goal: recover lowest-perplexity secret
Reformulation: build prefix tree; edge
cost = —log, Pr(token | prefix).

Search: priority-queue (Dijkstra-style)
expands (i.e. push its children with
updated costs) lowest-cost prefixes until
full length.

GPU batching: pop many nodes —
single batched forward pass (huge
speedup)— The first leaf node found is
not always the best—continue a few
extra rounds, rescore, keep best
sequence.

04

b

.5: -'0 5.

“aa )l ab [ba [ bb

perplexity=4.64 perplexity=1.47 perplexity=1.73 perplexity=1.73

Figure 9: An example to illustrate the shortest path search
algorithm. Each node represents one partially generated string.
Each edge denotes the conditional probability Pr(x;|x;...x;_1).
The path to the leaf with minimum perplexity is highlighted,
and the log-perplexity is depicted below each leaf node.



Efficient Extraction Algorithm

Goal: recover lowest-perplexity secret
Reformulation: build prefix tree;
edge cost = —log, Pr(token | prefix).
Search: priority-queue
(Dijkstra-style) expands lowest-cost
prefixes.

GPU batching: pop many nodes —
single batched forward pass (huge
speedup)

Results: enumerates ~103—105x fewer
candidates than brute force; succeeds
when exposure is high.
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Figure 10: Number of iterations the shortest-path search re-
quires before an inserted canary is returned, with | R | = 2.
At exposure 30, when the canary is fully memorized, our al-
gorithm requires over four orders of magnitude fewer queries
compared to brute force.



High Exposure implies Extraction
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Figure 11: Extraction is possible when the exposure indicates
it should be possible: when | R | = 23, at an exposure of 30
extraction quickly shifts from impossible to possible.



Preventing Unintended Memorization

1. Regularization (does not help!) maybe expected because the problem is not overtraining...
a. Weight Decay
b. Dropout
c. Quantization (e.g. force each weight to be one of only N different values)

2. Sanitization (possible but hard to do)

3. Differential Privacy (works!)



Differential Privacy

Definition 5 A randomized algorithm A operating on a
dataset D is (€,0)-differentially private if

Pr[A(D) € S] <exp(e)-Pr[A(D) € S|+ 8

for any set S of possible outputs of A4, and any two data sets
D, D that differ in at most one element.

® [f dataset D includes one secret x, and D' = D - {x}, then models trained with DP-SGD on D and D’ are
nearly identical.
O  DP-SGD has per-example gradient clipping and added Gaussian noise
® Individual records (like secrets) have minimal influence = — model cannot memorize them
completely!
® Training is ~10-100x slower than standard + test loss within ~10% of non-DP baseline



Discussion

They mentioned:

e Other ML models , such as image classifiers?
e What if we have oracle access to less? For example, just most likely (arg max) output.
e What if we have oracle access to more? (the actual weights and internal activations of

the neural network...)
My question(s):

e Israre, unique, out of distribution data the best way to characterize secrets?
e How to prevent from memorizing in-distribution secrets?
e How to improve privacy-training time-test loss trade-off?



Thank you!



