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Motivation

● Instruction tuning is useful when we want to build models that follow 
instructions.
Data: Instruction: "Translate to French”. Input: "Hello”. Output: "Bonjour”
Train to maximize 

log prob("Bonjour” | "Translate to French”, "Hello”)
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● Instruction tuning on a diverse set of instructions can deteriorate performance if 
we care about only a subset of tasks downstream [Wang et al. (2023b)]



Research Question

Given some examples of downstream tasks, 
how can we select relevant fine-tuning data 
from a large database of instruction data?

Solution: Influence functions!
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Problems

1. LLMs are trained on batches of data using ADAM not SGD

2.                     gradient is computed for a sequence = average gradient of all 
tokens. Empirically, it is observed that the gradient value is larger for shorter 
response.

3. We need lots of compute!
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P2: Adjusting instruction lengths

Normalize by replacing dot product with cosine similarity
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2. Reduce the dimensionality of this ADAM update by randomly projecting it on 
to a low dimensional space:

Johnson-Lindenstrauss Lemma; dot-product is preserved (???)
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P3: Compute reduction

● Do the same for validation data but with regular gradient. Take average 
across all data for a given task.

● Finally, influence is given by:

● Rank based on: 



Experiments - Dataset

● MMLU: MCQ questions in CS, elementary math, US history, law etc.
● TYDIQA: multi-lingual Q and A with question and passage. Task is extracting 

answer from the passage.
● BBH: challenging tasks from BIG-Bench selected to evaluate reasoning 

capabilities.



Experiments

● Models: LLAMA-2-7B, LLAMA-2-13B, MISTRAL-7B

● Transfer learning (LESS-T): compute influence using a smaller model 
(LLAMA-2-7B) but train selected data on the bigger models (any 3).



Baselines

● Random selection: self-explanatory.

● BM25: featurize example based on word frequency statistics and select top k 
most similar training data point.

● DSIR: use n-gram features to also rank training data.

● RDS: use model’s hidden representation as features.



Results

*** More experiments in paper for compute time, warm-up, LoRA efficiency, projection dimension 
selection, qualitative analysis, etc.


