
LESS: Selecting Influential Data for
Targeted Instruction Tuning

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora,
Danqi Chen

Motivation

● Instruction tuning is useful when we want to build models that follow
instructions.
Data: Instruction: "Translate to French”. Input: "Hello”. Output: "Bonjour”
Train to maximize

log prob("Bonjour” | "Translate to French”, "Hello”)

Motivation

● Instruction tuning is useful when we want to build models that follow
instructions.
Data: Instruction: "Translate to French”. Input: "Hello”. Output: "Bonjour”
Train to maximize

log prob("Bonjour” | "Translate to French”, "Hello”)

● Instruction tuning on a diverse set of instructions can deteriorate performance if
we care about only a subset of tasks downstream [Wang et al. (2023b)]

Research Question

Given some examples of downstream tasks,
how can we select relevant fine-tuning data
from a large database of instruction data?

Solution: Influence functions!

If 𝑧 is a single training data point, the SGD update for model parameter 𝜃 is:

Influence Functions for SGD

If 𝑧 is a single training data point, the SGD update for model parameter 𝜃 is:

If 𝑧′ is a validation datapoint, then its difference in loss using Taylor expansion is:

Influence Functions for SGD

If 𝑧 is a single training data point, the SGD update for model parameter 𝜃 is:

If 𝑧′ is a validation datapoint, then its difference in loss using Taylor expansion is:

Plugging in the first equation for change in model params we get:

Influence Functions for SGD

If 𝑧 is a single training data point, the SGD update for model parameter 𝜃 is:

If 𝑧′ is a validation datapoint, then its difference in loss using Taylor expansion is:

Plugging in the first equation for change in model params we get:

Influence function:

Influence Functions for SGD

Problems

1. LLMs are trained on batches of data using ADAM not SGD

2. gradient is computed for a sequence = average gradient of all
tokens. Empirically, it is observed that the gradient value is larger for shorter
response.

3. We need lots of compute!

P1: Influence function generalization to ADAM

● Reminder: 𝑧′ is a validation datapoint, then loss reduction is approximated as:

P1: Influence function generalization to ADAM

● Reminder: 𝑧′ is a validation datapoint, then loss reduction is approximated as:

● Adam update is:

P1: Influence function generalization to ADAM

● Reminder: 𝑧′ is a validation datapoint, then loss reduction is approximated as:

● Adam update is:

Warmup!

P1: Influence function generalization to ADAM

● Reminder: 𝑧′ is a validation datapoint, then loss reduction is approximated as:

● Adam update is:

Warmup!

P2: Adjusting instruction lengths

P2: Adjusting instruction lengths

Normalize by replacing dot product with cosine similarity

P3: Compute reduction

1. Update LLM parameters using LoRA, i.e. decompose model parameters to a
product of low-ranked matrices and get the ADAM update.

P3: Compute reduction

1. Update LLM parameters using LoRA, i.e. decompose model parameters to a
product of low-ranked matrices and get the ADAM update.

2. Reduce the dimensionality of this ADAM update by randomly projecting it on
to a low dimensional space:

Johnson-Lindenstrauss Lemma; dot-product is preserved (???)

P3: Compute reduction

● Do the same for validation data but with regular gradient. Take average
across all data for a given task.

P3: Compute reduction

● Do the same for validation data but with regular gradient. Take average
across all data for a given task.

● Finally, influence is given by:

P3: Compute reduction

● Do the same for validation data but with regular gradient. Take average
across all data for a given task.

● Finally, influence is given by:

● Rank based on:

Experiments - Dataset

● MMLU: MCQ questions in CS, elementary math, US history, law etc.
● TYDIQA: multi-lingual Q and A with question and passage. Task is extracting

answer from the passage.
● BBH: challenging tasks from BIG-Bench selected to evaluate reasoning

capabilities.

Experiments

● Models: LLAMA-2-7B, LLAMA-2-13B, MISTRAL-7B

● Transfer learning (LESS-T): compute influence using a smaller model
(LLAMA-2-7B) but train selected data on the bigger models (any 3).

Baselines

● Random selection: self-explanatory.

● BM25: featurize example based on word frequency statistics and select top k
most similar training data point.

● DSIR: use n-gram features to also rank training data.

● RDS: use model’s hidden representation as features.

Results

*** More experiments in paper for compute time, warm-up, LoRA efficiency, projection dimension
selection, qualitative analysis, etc.

