

LESS: Selecting Influential Data for Targeted Instruction Tuning

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora,
Danqi Chen

Motivation

- Instruction tuning is useful when we want to build models that follow instructions.

Data: Instruction: "Translate to French". Input: "Hello". Output: "Bonjour"
Train to maximize

log prob("Bonjour" | "Translate to French", "Hello")

Motivation

- Instruction tuning is useful when we want to build models that follow instructions.

Data: Instruction: "Translate to French". Input: "Hello". Output: "Bonjour"
Train to maximize

$$\log \text{prob}(\text{"Bonjour"} \mid \text{"Translate to French"}, \text{"Hello"})$$

- Instruction tuning on a diverse set of instructions can deteriorate performance if we care about only a subset of tasks downstream [Wang et al. (2023b)]

Research Question

*Given some examples of downstream tasks,
how can we select relevant fine-tuning data
from a large database of instruction data?*

Solution: Influence functions!

Influence Functions for SGD

If z is a single training data point, the SGD update for model parameter θ is:

$$\theta^{t+1} - \theta^t = -\eta_t \nabla \ell(z; \theta^t)$$

Influence Functions for SGD

If z is a single training data point, the SGD update for model parameter θ is:

$$\theta^{t+1} - \theta^t = -\eta_t \nabla \ell(z; \theta^t)$$

If z' is a validation datapoint, then its difference in loss using Taylor expansion is:

$$\ell(z'; \theta^{t+1}) \approx \ell(z'; \theta^t) + \langle \nabla \ell(z'; \theta^t), \theta^{t+1} - \theta^t \rangle$$

Influence Functions for SGD

If z is a single training data point, the SGD update for model parameter θ is:

$$\theta^{t+1} - \theta^t = -\eta_t \nabla \ell(z; \theta^t)$$

If z' is a validation datapoint, then its difference in loss using Taylor expansion is:

$$\ell(z'; \theta^{t+1}) \approx \ell(z'; \theta^t) + \langle \nabla \ell(z'; \theta^t), \theta^{t+1} - \theta^t \rangle$$

Plugging in the first equation for change in model params we get:

$$\ell(z'; \theta^{t+1}) - \ell(z'; \theta^t) \approx -\eta_t \langle \nabla \ell(z; \theta^t), \nabla \ell(z'; \theta^t) \rangle$$

Influence Functions for SGD

If z is a single training data point, the SGD update for model parameter θ is:

$$\theta^{t+1} - \theta^t = -\eta_t \nabla \ell(z; \theta^t)$$

If z' is a validation datapoint, then its difference in loss using Taylor expansion is:

$$\ell(z'; \theta^{t+1}) \approx \ell(z'; \theta^t) + \langle \nabla \ell(z'; \theta^t), \theta^{t+1} - \theta^t \rangle$$

Plugging in the first equation for change in model params we get:

$$\ell(z'; \theta^{t+1}) - \ell(z'; \theta^t) \approx -\eta_t \langle \nabla \ell(z; \theta^t), \nabla \ell(z'; \theta^t) \rangle$$

Influence function:

$$\text{Inf}_{\text{SGD}}(z, z') \triangleq \sum_{i=1}^N \bar{\eta}_i \langle \nabla \ell(z'; \theta_i), \nabla \ell(z; \theta_i) \rangle$$

Problems

1. LLMs are trained on batches of data using ADAM not SGD
2. $\nabla \ell(z; \theta^t)$ gradient is computed for a sequence = average gradient of all tokens. Empirically, it is observed that the gradient value is larger for shorter response.
3. We need lots of compute!

P1: Influence function generalization to ADAM

- Reminder: z' is a validation datapoint, then loss reduction is approximated as:

$$\ell(z'; \boldsymbol{\theta}^{t+1}) \approx \ell(z'; \boldsymbol{\theta}^t) + \langle \nabla \ell(z'; \boldsymbol{\theta}^t), \boldsymbol{\theta}^{t+1} - \boldsymbol{\theta}^t \rangle$$

P1: Influence function generalization to ADAM

- Reminder: z' is a validation datapoint, then loss reduction is approximated as:

$$\ell(z'; \boldsymbol{\theta}^{t+1}) \approx \ell(z'; \boldsymbol{\theta}^t) + \langle \nabla \ell(z'; \boldsymbol{\theta}^t), \boldsymbol{\theta}^{t+1} - \boldsymbol{\theta}^t \rangle$$

- Adam update is:

$$\boldsymbol{\theta}^{t+1} - \boldsymbol{\theta}^t = -\eta_t \Gamma(\mathbf{z}, \boldsymbol{\theta}^t)$$

$$\Gamma(\mathbf{z}, \boldsymbol{\theta}^t) \triangleq \frac{\mathbf{m}^{t+1}}{\sqrt{\mathbf{v}^{t+1} + \epsilon}}$$

$$\mathbf{m}^{t+1} = (\beta_1 \mathbf{m}^t + (1 - \beta_1) \nabla \ell(\mathbf{z}; \boldsymbol{\theta}^t)) / (1 - \beta_1^t)$$

$$\mathbf{v}^{t+1} = (\beta_2 \mathbf{v}^t + (1 - \beta_2) \nabla \ell(\mathbf{z}; \boldsymbol{\theta}^t)^2) / (1 - \beta_2^t)$$

P1: Influence function generalization to ADAM

- Reminder: z' is a validation datapoint, then loss reduction is approximated as:

$$\ell(z'; \boldsymbol{\theta}^{t+1}) \approx \ell(z'; \boldsymbol{\theta}^t) + \langle \nabla \ell(z'; \boldsymbol{\theta}^t), \boldsymbol{\theta}^{t+1} - \boldsymbol{\theta}^t \rangle$$

- Adam update is:

$$\boldsymbol{\theta}^{t+1} - \boldsymbol{\theta}^t = -\eta_t \Gamma(\mathbf{z}, \boldsymbol{\theta}^t)$$

$$\Gamma(\mathbf{z}, \boldsymbol{\theta}^t) \triangleq \frac{\mathbf{m}^{t+1}}{\sqrt{\mathbf{v}^{t+1} + \epsilon}}$$

$$\mathbf{m}^{t+1} = (\beta_1 \mathbf{m}^t + (1 - \beta_1) \nabla \ell(\mathbf{z}; \boldsymbol{\theta}^t)) / (1 - \beta_1^t)$$

Warmup!

$$\mathbf{v}^{t+1} = (\beta_2 \mathbf{v}^t + (1 - \beta_2) \nabla \ell(\mathbf{z}; \boldsymbol{\theta}^t)^2) / (1 - \beta_2^t)$$

P1: Influence function generalization to ADAM

- Reminder: z' is a validation datapoint, then loss reduction is approximated as:

$$\ell(z'; \boldsymbol{\theta}^{t+1}) \approx \ell(z'; \boldsymbol{\theta}^t) + \langle \nabla \ell(z'; \boldsymbol{\theta}^t), \boldsymbol{\theta}^{t+1} - \boldsymbol{\theta}^t \rangle$$

- Adam update is:

$$\boldsymbol{\theta}^{t+1} - \boldsymbol{\theta}^t = -\eta_t \Gamma(\mathbf{z}, \boldsymbol{\theta}^t)$$

$$\Gamma(\mathbf{z}, \boldsymbol{\theta}^t) \triangleq \frac{\mathbf{m}^{t+1}}{\sqrt{\mathbf{v}^{t+1} + \epsilon}}$$

$$\mathbf{m}^{t+1} = (\beta_1 \mathbf{m}^t + (1 - \beta_1) \nabla \ell(\mathbf{z}; \boldsymbol{\theta}^t)) / (1 - \beta_1^t)$$

Warmup!

$$\mathbf{v}^{t+1} = (\beta_2 \mathbf{v}^t + (1 - \beta_2) \nabla \ell(\mathbf{z}; \boldsymbol{\theta}^t)^2) / (1 - \beta_2^t)$$

$$\ell(z'; \boldsymbol{\theta}^{t+1}) \approx \ell(z'; \boldsymbol{\theta}^t) + \langle \nabla \ell(z'; \boldsymbol{\theta}_i), \Gamma(\mathbf{z}, \boldsymbol{\theta}_i) \rangle$$

P2: Adjusting instruction lengths

$$\ell(\mathbf{z}'; \boldsymbol{\theta}^{t+1}) \approx \ell(\mathbf{z}'; \boldsymbol{\theta}^t) + \langle \nabla \ell(\mathbf{z}'; \boldsymbol{\theta}_i), \boldsymbol{\Gamma}(\mathbf{z}, \boldsymbol{\theta}_i) \rangle$$

P2: Adjusting instruction lengths

$$\ell(\mathbf{z}'; \boldsymbol{\theta}^{t+1}) \approx \ell(\mathbf{z}'; \boldsymbol{\theta}^t) + \langle \nabla \ell(\mathbf{z}'; \boldsymbol{\theta}_i), \Gamma(\mathbf{z}, \boldsymbol{\theta}_i) \rangle$$

Normalize by replacing dot product with cosine similarity

$$\text{Inf}_{\text{Adam}}(\mathbf{z}, \mathbf{z}') \triangleq \sum_{i=1}^N \bar{\eta}_i \cos(\nabla \ell(\mathbf{z}'; \boldsymbol{\theta}_i), \Gamma(\mathbf{z}, \boldsymbol{\theta}_i))$$

P3: Compute reduction

1. Update LLM parameters using LoRA, i.e. decompose model parameters to a product of low-ranked matrices and get the ADAM update.

$$\hat{\Gamma}(\cdot, \theta)$$

P3: Compute reduction

1. Update LLM parameters using LoRA, i.e. decompose model parameters to a product of low-ranked matrices and get the ADAM update.

$$\hat{\Gamma}(\cdot, \theta)$$

2. Reduce the dimensionality of this ADAM update by randomly projecting it on to a low dimensional space:

$$\tilde{\Gamma}(z, \cdot) = \Pi^\top \hat{\Gamma}(z, \cdot)$$

$$\Pi_{ij} \sim \mathcal{U}(\{-1, 1\})$$

Johnson-Lindenstrauss Lemma; dot-product is preserved (???)

P3: Compute reduction

- Do the same for validation data but with regular gradient. Take average across all data for a given task.

$$\bar{\nabla} \ell(\mathcal{D}_{\text{val}}^{(j)}; \boldsymbol{\theta}_i) = \frac{1}{|\mathcal{D}_{\text{val}}^{(j)}|} \sum_{\mathbf{z}' \in \mathcal{D}_{\text{val}}^{(j)}} \tilde{\nabla} \ell(\mathbf{z}'; \boldsymbol{\theta}_i)$$

P3: Compute reduction

- Do the same for validation data but with regular gradient. Take average across all data for a given task.

$$\bar{\nabla} \ell(\mathcal{D}_{\text{val}}^{(j)}; \boldsymbol{\theta}_i) = \frac{1}{|\mathcal{D}_{\text{val}}^{(j)}|} \sum_{\mathbf{z}' \in \mathcal{D}_{\text{val}}^{(j)}} \tilde{\nabla} \ell(\mathbf{z}'; \boldsymbol{\theta}_i)$$

- Finally, influence is given by:

$$\text{Inf}_{\text{Adam}}(\mathbf{z}, \mathcal{D}_{\text{val}}^{(j)}) = \sum_{i=1}^N \bar{\eta}_i \frac{\langle \bar{\nabla} \ell(\mathcal{D}_{\text{val}}^{(j)}; \boldsymbol{\theta}_i), \tilde{\Gamma}(\mathbf{z}, \boldsymbol{\theta}_i) \rangle}{\|\bar{\nabla} \ell(\mathcal{D}_{\text{val}}^{(j)}; \boldsymbol{\theta}_i)\| \|\tilde{\Gamma}(\mathbf{z}, \boldsymbol{\theta}_i)\|}$$

P3: Compute reduction

- Do the same for validation data but with regular gradient. Take average across all data for a given task.

$$\bar{\nabla} \ell(\mathcal{D}_{\text{val}}^{(j)}; \boldsymbol{\theta}_i) = \frac{1}{|\mathcal{D}_{\text{val}}^{(j)}|} \sum_{\mathbf{z}' \in \mathcal{D}_{\text{val}}^{(j)}} \tilde{\nabla} \ell(\mathbf{z}'; \boldsymbol{\theta}_i)$$

- Finally, influence is given by:

$$\text{Inf}_{\text{Adam}}(\mathbf{z}, \mathcal{D}_{\text{val}}^{(j)}) = \sum_{i=1}^N \bar{\eta}_i \frac{\langle \bar{\nabla} \ell(\mathcal{D}_{\text{val}}^{(j)}; \boldsymbol{\theta}_i), \tilde{\Gamma}(\mathbf{z}, \boldsymbol{\theta}_i) \rangle}{\|\bar{\nabla} \ell(\mathcal{D}_{\text{val}}^{(j)}; \boldsymbol{\theta}_i)\| \|\tilde{\Gamma}(\mathbf{z}, \boldsymbol{\theta}_i)\|}$$

- Rank based on: $\max_j \text{Inf}_{\text{Adam}}(\mathbf{z}, \mathcal{D}_{\text{val}}^{(j)})$

Experiments - Dataset

- MMLU: MCQ questions in CS, elementary math, US history, law etc.
- TYDIQA: multi-lingual Q and A with question and passage. Task is extracting answer from the passage.
- BBH: challenging tasks from BIG-Bench selected to evaluate reasoning capabilities.

Dataset	# Shot	# Tasks	$ \mathcal{D}_{\text{val}} $	$ \mathcal{D}_{\text{test}} $	Answer Type
MMLU	5	57	285	18,721	Letter options
TYDIQA	1	9	9	1,713	Span
BBH	3	23	69	920	COT and answer

Experiments

- Models: LLAMA-2-7B, LLAMA-2-13B, MISTRAL-7B
- Transfer learning (**LESS-T**): compute influence using a smaller model (LLAMA-2-7B) but train selected data on the bigger models (any 3).

Baselines

- Random selection: self-explanatory.
- BM25: featurize example based on word frequency statistics and select top k most similar training data point.
- DSIR: use n-gram features to also rank training data.
- RDS: use model's hidden representation as features.

Results

Data percentage	MMLU				TYDIQA				BBH			
	Full (100%)	Rand. (5%)	LESS-T (5%)	LESS (5%)	Full (100%)	Rand. (5%)	LESS-T (5%)	LESS (5%)	Full (100%)	Rand. (5%)	LESS-T (5%)	LESS (5%)
LLAMA-2-7B	51.6	46.5 (0.5)	-	50.2 (0.5)	54.0	52.7 (0.4)	-	56.2 (0.7)	43.2	38.9 (0.5)	-	41.5 (0.6)
LLAMA-2-13B	54.5	53.4 (0.1)	54.6 (0.3)	54.0 (0.7)	54.3	53.0 (1.3)	57.5 (0.8)	54.6 (0.3)	50.8	47.0 (1.6)	49.9 (0.5)	50.6 (0.6)
MISTRAL-7B	60.4	60.0 (0.1)	60.6 (0.3)	61.8 (0.4)	57.7	56.9 (0.2)	61.7 (1.7)	60.3 (2.4)	53.0	54.5 (0.1)	56.0 (0.8)	56.0 (1.0)

	Rand.	BM25	DSIR	RDS	LESS	Δ
MMLU	46.5 (0.5)	47.6	46.1 (0.3)	45.0 (1.0)	50.2 (0.5)	↑2.6
TYDIQA	52.7 (0.4)	52.7	44.5 (1.7)	46.8 (1.3)	56.2 (0.7)	↑3.5
BBH	38.9 (0.5)	39.8	36.8 (0.1)	36.7 (1.3)	41.5 (0.6)	↑1.7

*** More experiments in paper for compute time, warm-up, LoRA efficiency, projection dimension selection, qualitative analysis, etc.