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Warm-started from slides by Andrew Ilyas and Amin Saberi
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Decisions:

e How to choose the parameter space to avoid overfifting?
e What (convex) loss function { to choose?
o Which optimization algorithm to use?

Guarantees: Convergence rates, generalization bounds, uncertainty quantification
(via confidence intervals), performance on different distributions,...
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Implications: Unpredictability, theoretical wisdom might not apply, new
considerations, need to understand new phenomena, ...



Goal of this group

What do rigorous foundations for this new age of ML look like?

How can tools from statistics, CS theory, and operations inform a better
understanding of machine learning algorithms and systems?

What are the right questions to ask, and phenomena to explain—at what /evel
of abstraction should we be aiming to explain them?

What theoretical models not only explain unexpected phenomena, but also
predict new phenomena that we can verify experimentally?



Intended format (thanks for signing up!)

Goal: Build intuition, leverage group’s diversity, start collaborations (bringing new

perspectives from everyone’s field) E E

[=]3z"

1. A single “deep dive” per week about one subject (can be multiple papers)

2.  We have suggested several papers for each week, more than one can cover
thoroughly in a week. Pick a small + focused paper set and read thoroughly

3. Prepare a 20-30 minute presentation, accessible to a second year PhD student,

focusing on (a) seeding discussion and (b) identifying gaps and connections, and (c)
formulating open problems

Sign up: https://tinyurl.com/reform-ml-signup-w26

Goal(s) of the discussant (1-2 every week):

Everyone else: Read paper/watch talk/something! Try to come with some familiarity



https://tinyurl.com/reform-ml-signup-w26

Introductions!

What is your name?

What program and year are you in?

What focus area are you most interested in?

What are you working on? What do you want to work on?

What brought you to this reading group?



Outline for the Quarter

Introduce the theme for this quarter: Training dynamics and optimization
The quarter is divided into three sessions (each two-week long)
Each Session’s Goal: Explore a sub-area in depth

Understand the known results

Identify gaps

Formulate open problems



Sessions This Quarter
A) Sharpness and Training Dynamics (Jan 22, Feb 5)
B) Opverfitting and Generalization (Feb 12, Feb 19)

C) Grokking and Emergent Abilities (Feb 26, Mar 5)



Meetings This Quarter

January 22nd (today!) Introduction to edge of stability (EoS)

January 29th Skipping due to ICML deadline

February 5th Explanations of EoS / Sharpness & Generalization
February 12th Double Descent

February 19th Benign Overfitting

February 26th Grokking

March 5th Other emergent abilities

March 12th Reserved for extra meeting on above / different topic



Session 1
Edge of Stability

GRADIENT DESCENT ON NEURAL NETWORKS TYPI-
CALLY OCCURS AT THE EDGE OF STABILITY

Jeremy Cohen Simran Kaur YuanzhiLi J. Zico Kolter! and Ameet Talwalkar?
Carnegie Mellon University and: 'Bosch AI 2 Determined Al
Correspondence to: jeremycohen@cmu.edu




Why? The State of ML Optimization

The state of neural network optimization, today:

1. Many optimization algorithms (SGD, momentum, Adam, muon, ...), can
successfully train neural networks (CNNs, transformers, ...)

2. Insimplified settings (quadratic and convex functions), we understand what
these algorithms do, and why they succeed

3. However, we do not understand how they function in realistic settings

Q: Can we use principled empirical observations to develop an
understanding? Even for the simplest optimizer — gradient descent?




GD and Sharpness with Quadratic Functions

Consider running gradient descent with step
size 11 on a 1-dimensional quadratic

The behavior depends on the relationship
between the step size 1 and curvature a

o [Ifa<2/n, gradient descent converges
e [Ifa>2/n, gradient descent diverges

f(x) = %axz—kbxjtc




GD and Sharpness with Quadratic Functions

Consider running gradient descent with step
size 11 on a 1-dimensional quadratic

The behavior depends on the relationship
between the step size 1 and curvature a

o [Ifa<2/n, gradient descent converges
e [Ifa>2/n, gradient descent diverges

f(x) = %axz—kbxqtc




GD and Sharpness with Quadratic Functions

Consider running gradient descent with step
size 11 on a 1-dimensional quadratic

The behavior depends on the relationship
between the step size 1 and curvature a

o [Ifa<2/n, gradient descent converges
e [Ifa>2/n, gradient descent diverges

f(x) = %axz—kbxqtc




GD and Sharpness with Quadratic Functions

Consider running gradient descent with step
size 11 on a 1-dimensional quadratic

The behavior depends on the relationship
between the step size 1 and curvature a

e [Ifa<2/n, gradient descent converges
o [Ifa>2/n, gradient descent diverges

1
Sharpness at x: ‘vzf(x)‘ ‘ f(x) — ELZXZ +bx +c




GD and Sharpness with Quadratic Functions

Consider running gradient descent with step
size 11 on a 1-dimensional quadratic

The behavior depends on the relationship
between the step size 1 and curvature a

o [Ifa<2/n, gradient descent converges
e [Ifa>2/n, gradient descent diverges

Natural generalization to higher-dimensions

1
Sharpness at x: Hvzf(x) Hz f(x) — ELZXZ +bx + ¢




Sharpness in deep learning

Sharpness: Maximum eigenvalue of
Hessian of training loss f(x)

How does sharpness behave in neural
network training?

Rough Observation: Initially, the
sharpness increases until it reaches a
stable value after which it stabilizes

sharpness
400 -
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Sharpness in deep learning

Sharpness: Maximum eigenvalue of sharpness
Hessian of training loss f(x) 400 A
2/n!

How does sharpness behave in neural s i l _______________
network training?

0 ! | !
Observation 1 (Progressive sharpening): 0 5000 10000 15000
If SharpI}eSS is less than 2/T] (1.8., gra.dlent The network is a fully-connected architecture with two
descent is stable), sharpness tends to increase hidden layers of width 200, and tanh activations.

Observation 2 (Edge of stability):
After this, sharpness hovers just above 2/n
for the remainder of training




Sharpness and Train Loss

(a) train loss and sharpness
before sharpness crosses 2/n
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Sharpness and Train Loss

(b) train loss and (q1, x;) for first Unclear what happens next:

215 steps after sharpness crosses 2/n

# 0225 / 1. Iflossis quadratic, GD diverges
8 0.200 - 2. GD might “jump” to a flatter region
and train loss stagnates
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Sharpness and Train Loss
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(c) train loss and (q1, x;) for first
1000 steps after sharpness crosses 2/n

ek o

0 200 400 600 800 1000
steps since sharpness crossed 2/n

Unclear what happens next:

1. Iflossis quadratic, GD diverges

2. GD might “jump” to a flatter region
and train loss stagnates

3. GD might not escape local minima

None of these happen! GD makes progress
and training loss reduces



Updated Picture

train loss sharpness
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Different Step-Sizes 1

n=2/100 n=2/200 n=2/300 n=2/400
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Different Step-Sizes in the Same Run
Drop 1 from 2/200 to 2/300 at iteration 6000
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Different Step-Sizes in the Same Run
Drop 1 from 2/200 to 2/300 at iteration 6000
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On changing 1, GD re-enters the progressive sharpness regime



Different Tasks and Architectures
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Different Tasks and Architectures

VGG (no BN) VGG (BN) ResNet
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Step-size 1 used to train is 50x too large to observe progressive sharpening



For (Some) Other Optimizers

Polyak Momentum:  viy1 = Boy — NV f(Xxt), Xpp1 = Xt + 0441

Nesterov Momentum:  vp41 = Boy — NV f(xp + Boy), Xp41 = Xp + Uppq

train loss sharpness
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Q: Other optimizers? It does not apply to SGD unless batch size is large...



Implications for optimization theory

The behavior of gradient descent at the Edge of Stability casts doubt on
traditional step-size choice — selected based on quadratic approx

Perhaps one should consider higher-order Taylor approximations?

Self-Stabilization: The Implicit Bias of Gradient

Descent at the Edge of Stability Understanding Optimization in Deep Learning with Central Flows

Alex Damian* Eshaan Nichani* Jeremy Cohen* Alex Damian*
Princeton University Princeton University Carnegie Mellon and Flatiron Institute Princeton University
ad27@princeton.edu eshnich@princeton.edu : ; . . : :
jmcohen.github.io alex—-damian.github.io
Jason D. Lee .
Princeton University Ameet Talwalkar J. Zico Kolter Jason D. Lee
jasonlee@princeton.edu Carnegie Mellon University Carnegie Mellon University Princeton University



Several Caveats

® [oss Function Choice: With cross-entropy loss, the sharpness often
drops at end of training

e Architecture + Dataset: For shallow/wide networks, or simple
datasets, sharpness does not rise to 2/

® Baitch normalization: Need to look at sharpness between iterates

e Non-differentiable components: instability sometimes begins when
the sharpness is a bit less than 2/
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1. Connection to generalization: Does the EoS regime impart inductive biases
that help finding “flatter” (often also more generalizable) minima?
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Open Questions

1.

Connection to generalization: Does the EoS regime impart inductive biases
that help finding “flatter” (often also more generalizable) minima?
Extension to “Fancier” Optimizers: Does EOS arise for fancier optimizers
(muon, SOAP, Shampoo, ...)? If yes, can this be used to understand and
improve their performance?
Edge of Stability for SGD: What is the correct EOS analogue for mini-batch
SGD? Ongoing work...
Edge of Stochastic Stability:
Revisiting the Edge of Stability for SGD

Arseniy Andreyev* Pierfrancesco Beneventano*



Appendix



Next Few Eigenvalues
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Caveat: The observation does not apply to SGD unless batch size is large
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