

ReFoRM Reading Group

Rethinking Foundations Real-World ML

Anay Mehrotra, Amin Saberi, Grigoris Velegkas

Warm-started from slides by Andrew Ilyas and Amin Saberi

Welcome to ReFoRM!

What is this reading group about? Foundations of *“real-world”* ML

Welcome to ReFoRM!

What is this reading group about? Foundations of “*real-world*” ML

How is “real-world” ML different from “idealized” ML?

Idealized picture:

$$\theta^* = \arg \min_{\theta \in \Theta} \mathbb{E}_{z \sim D} [\ell(z_i; \theta)]$$

Welcome to ReFoRM!

What is this reading group about? Foundations of “*real-world*” ML

How is “real-world” ML different from “idealized” ML?

Idealized picture:

$$\theta^* = \arg \min_{\theta \in \Theta} \mathbb{E}_{z \sim D} [\ell(z_i; \theta)]$$

Decisions:

- How to choose the parameter space to avoid *overfitting*?
- What (convex) *loss function* ℓ to choose?
- Which *optimization algorithm* to use?

Welcome to ReFoRM!

What is this reading group about? Foundations of “*real-world*” ML

How is “real-world” ML different from “idealized” ML?

Idealized picture:

$$\theta^* = \arg \min_{\theta \in \Theta} \mathbb{E}_{z \sim D} [\ell(z_i; \theta)]$$

Decisions:

- How to choose the parameter space to avoid *overfitting*?
- What (convex) *loss function* ℓ to choose?
- Which *optimization algorithm* to use?

Guarantees: Convergence rates, generalization bounds, uncertainty quantification (via confidence intervals), performance on different distributions,...

Welcome to ReFoRM!

What is this reading group about? Foundations of “real-world” ML

How is “real-world” ML different from “idealized” ML?

$$\text{Real-world ML: } \theta^* = \arg \min_{\theta \in \Theta} \mathbb{E}_{z \sim D} [\ell(z_i; \theta)]$$

Messy Dataset D

+

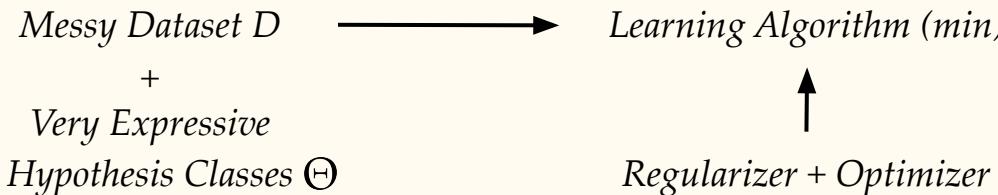
*Very Expressive
Hypothesis Classes Θ*

Welcome to ReFoRM!

What is this reading group about? Foundations of “real-world” ML

How is “real-world” ML different from “idealized” ML?

$$\text{Real-world ML: } \theta^* = \arg \min_{\theta \in \Theta} \mathbb{E}_{z \sim D} [\ell(z_i; \theta)]$$

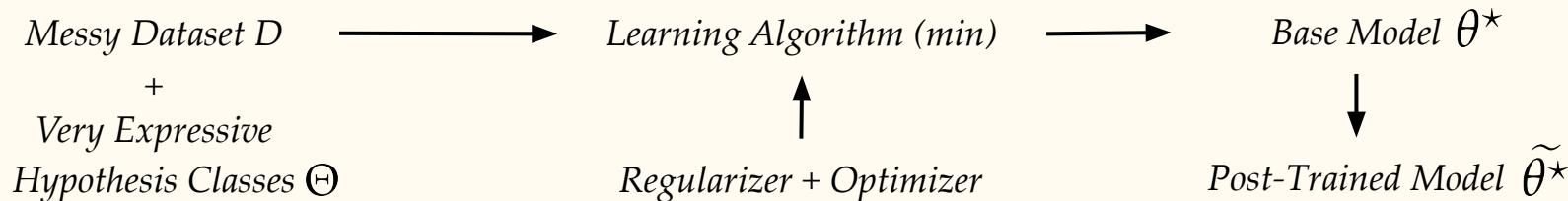


Welcome to ReFoRM!

What is this reading group about? Foundations of “real-world” ML

How is “real-world” ML different from “idealized” ML?

$$\text{Real-world ML: } \theta^* = \arg \min_{\theta \in \Theta} \mathbb{E}_{z \sim D} [\ell(z_i; \theta)]$$

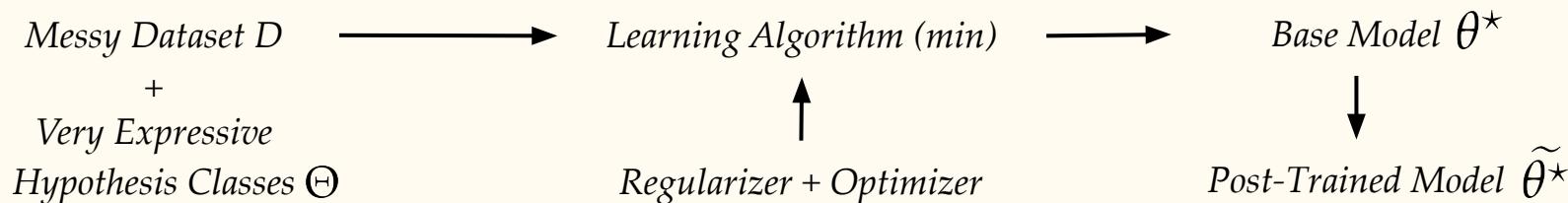


Welcome to ReFoRM!

What is this reading group about? Foundations of “real-world” ML

How is “real-world” ML different from “idealized” ML?

$$\text{Real-world ML: } \theta^* = \arg \min_{\theta \in \Theta} \mathbb{E}_{z \sim D} [\ell(z_i; \theta)]$$



Implications: Unpredictability, theoretical wisdom might not apply, new considerations, need to understand new phenomena, ...

Goal of this group

What do rigorous foundations for this new age of ML look like?

How can tools from statistics, CS theory, and operations inform a *better understanding* of machine learning algorithms and systems?

What are the right questions to ask, and phenomena to explain—at what *level of abstraction* should we be aiming to explain them?

What theoretical models not only *explain* unexpected phenomena, but also *predict* new phenomena that we can verify experimentally?

Intended format (thanks for signing up!)

Goal: Build intuition, leverage group's diversity, start collaborations (bringing new perspectives from everyone's field)

Sign up: <https://tinyurl.com/reform-ml-signup-w26>

Goal(s) of the discussant (1-2 every week):

1. A single “deep dive” per week about one subject (can be multiple papers)
2. We have suggested several papers for each week, *more* than one can cover thoroughly in a week. Pick a small + focused paper set and read thoroughly
3. Prepare a 20-30 minute presentation, accessible to a second year PhD student, focusing on (a) *seeding discussion* and (b) *identifying gaps and connections*, and (c) *formulating open problems*

Everyone else: Read paper/watch talk/something! *Try to come with some familiarity*

Introductions!

What is your *name*?

What *program and year* are you in?

What *focus area* are you most interested in?

What are you *working on*? What do you *want to work on*?

What brought you to this reading group?

Outline for the Quarter

Introduce the theme for this quarter: *Training dynamics and optimization*

The quarter is divided into three *sessions* (each two-week long)

Each Session's Goal: *Explore a sub-area in depth*

Understand the known results

Identify gaps

Formulate open problems

Sessions This Quarter

- A) Sharpness and Training Dynamics (Jan 22, Feb 5)
- B) Overfitting and Generalization (Feb 12, Feb 19)
- C) Grokking and Emergent Abilities (Feb 26, Mar 5)

Meetings This Quarter

January 22nd (today!)

January 29th

February 5th

Introduction to edge of stability (EoS)

Skipping due to ICML deadline

Explanations of EoS / Sharpness & Generalization

February 12th

February 19th

Double Descent

Benign Overfitting

February 26th

March 5th

Grokking

Other emergent abilities

March 12th

Reserved for extra meeting on above / different topic

Session 1

Edge of Stability

GRADIENT DESCENT ON NEURAL NETWORKS TYPICALLY OCCURS AT THE EDGE OF STABILITY

Jeremy Cohen Simran Kaur Yuanzhi Li J. Zico Kolter¹ and Ameet Talwalkar²
Carnegie Mellon University and: ¹Bosch AI ²Determined AI
Correspondence to: jeremycohen@cmu.edu

Why? The State of ML Optimization

The state of neural network optimization, today:

1. Many *optimization algorithms* (SGD, momentum, Adam, muon, ...), can *successfully train* neural networks (CNNs, transformers, ...)
2. In *simplified settings* (quadratic and convex functions), we *understand* what these algorithms do, and why they succeed
3. However, we *do not understand* how they function in *realistic settings*

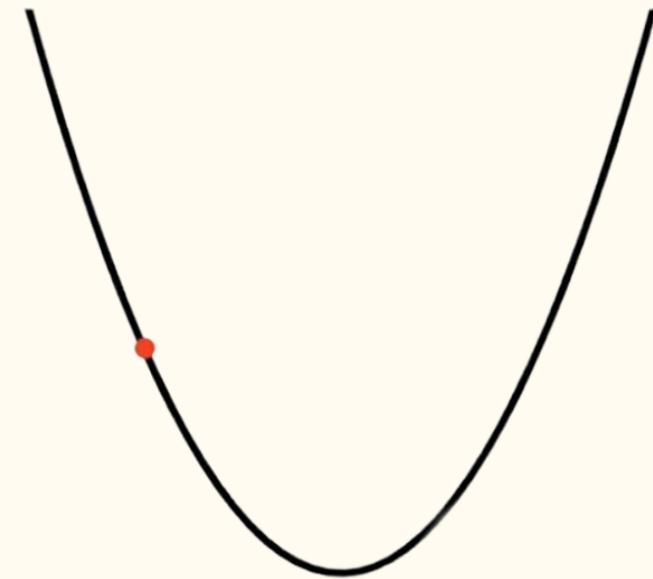
Q: Can we use principled empirical observations to develop an understanding? *Even for the simplest optimizer – gradient descent?*

GD and Sharpness with Quadratic Functions

Consider running gradient descent with step size η on a 1-dimensional quadratic

The behavior depends on the relationship between the *step size* η and *curvature* a

- If $a < 2/\eta$, gradient descent *converges*
- If $a > 2/\eta$, gradient descent *diverges*



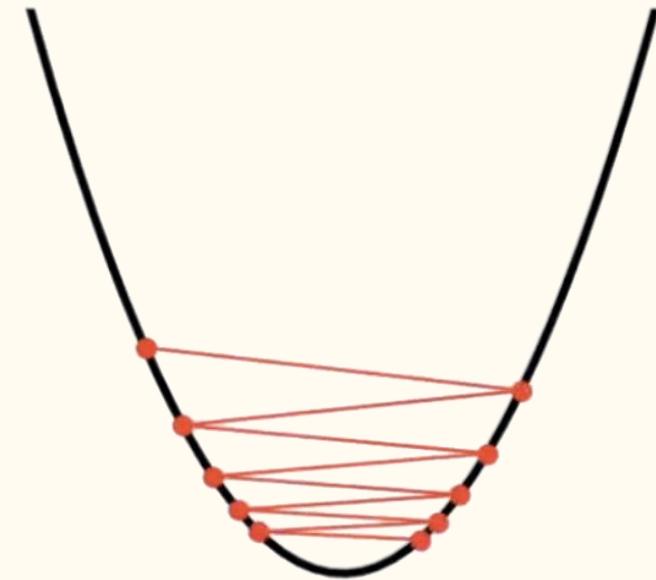
$$f(x) = \frac{1}{2}ax^2 + bx + c$$

GD and Sharpness with Quadratic Functions

Consider running gradient descent with step size η on a 1-dimensional quadratic

The behavior depends on the relationship between the *step size* η and *curvature* a

- If $a < 2/\eta$, gradient descent *converges*
- If $a > 2/\eta$, gradient descent *diverges*



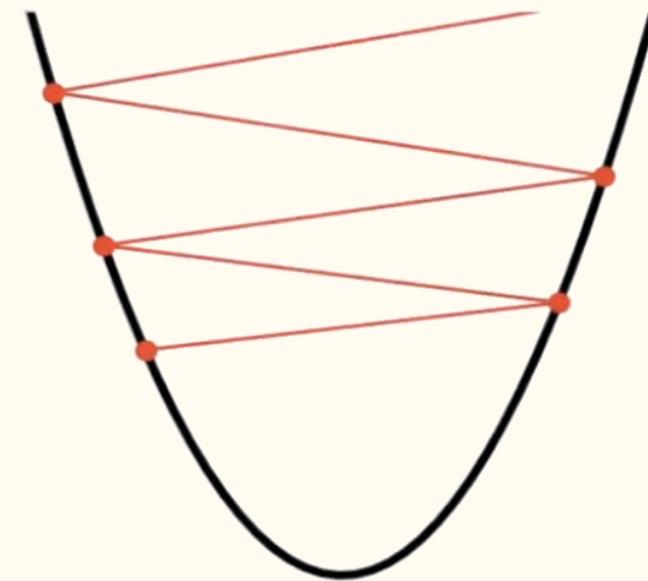
$$f(x) = \frac{1}{2}ax^2 + bx + c$$

GD and Sharpness with Quadratic Functions

Consider running gradient descent with step size η on a 1-dimensional quadratic

The behavior depends on the relationship between the *step size* η and *curvature* a

- If $a < 2/\eta$, gradient descent *converges*
- If $a > 2/\eta$, gradient descent *diverges*



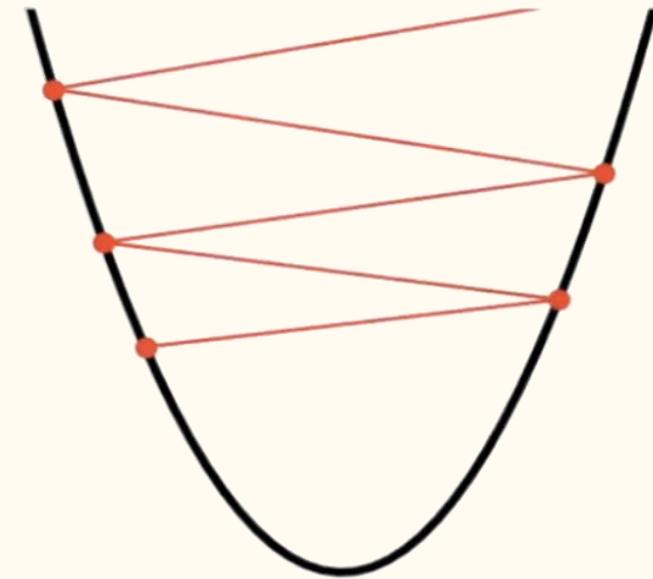
$$f(x) = \frac{1}{2}ax^2 + bx + c$$

GD and Sharpness with Quadratic Functions

Consider running gradient descent with step size η on a 1-dimensional quadratic

The behavior depends on the relationship between the *step size* η and *curvature* a

- If $a < 2/\eta$, gradient descent *converges*
- If $a > 2/\eta$, gradient descent *diverges*



Sharpness at x : $|\nabla^2 f(x)|$

$$f(x) = \frac{1}{2}ax^2 + bx + c$$

GD and Sharpness with Quadratic Functions

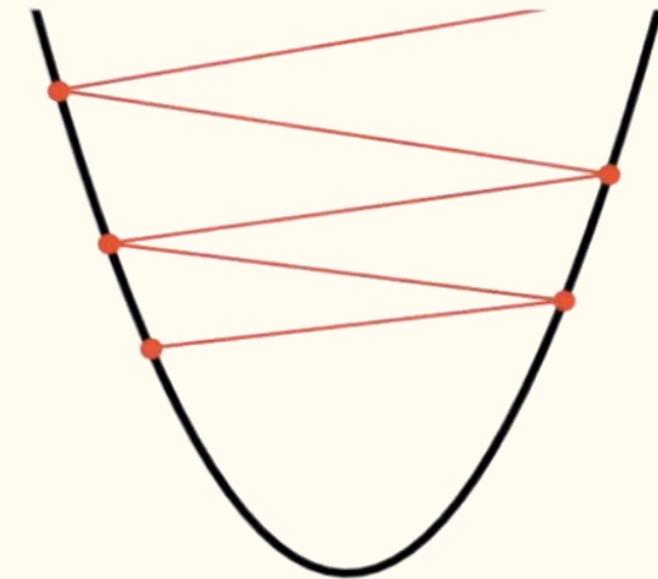
Consider running gradient descent with step size η on a 1-dimensional quadratic

The behavior depends on the relationship between the *step size* η and *curvature* a

- If $a < 2/\eta$, gradient descent *converges*
- If $a > 2/\eta$, gradient descent *diverges*

Natural generalization to higher-dimensions

Sharpness at x : $\|\nabla^2 f(x)\|_2$



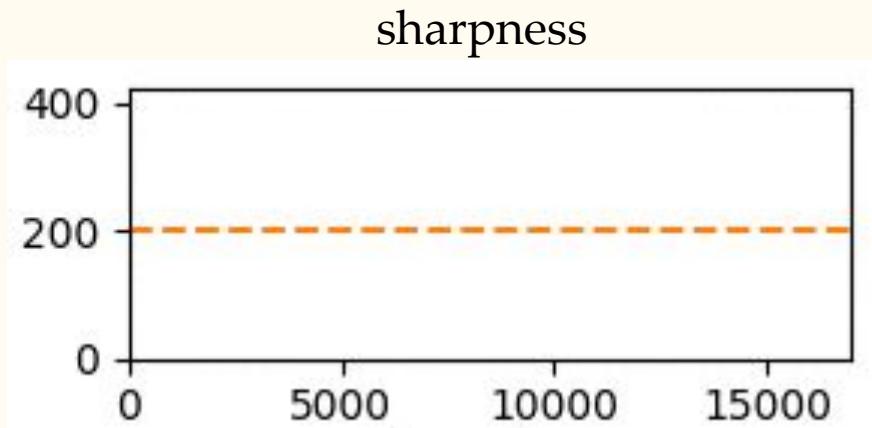
$$f(x) = \frac{1}{2}ax^2 + bx + c$$

Sharpness in deep learning

Sharpness: Maximum eigenvalue of Hessian of training loss $f(x)$

How does sharpness behave in neural network training?

Rough Observation: Initially, the sharpness increases until it reaches a stable value after which it stabilizes



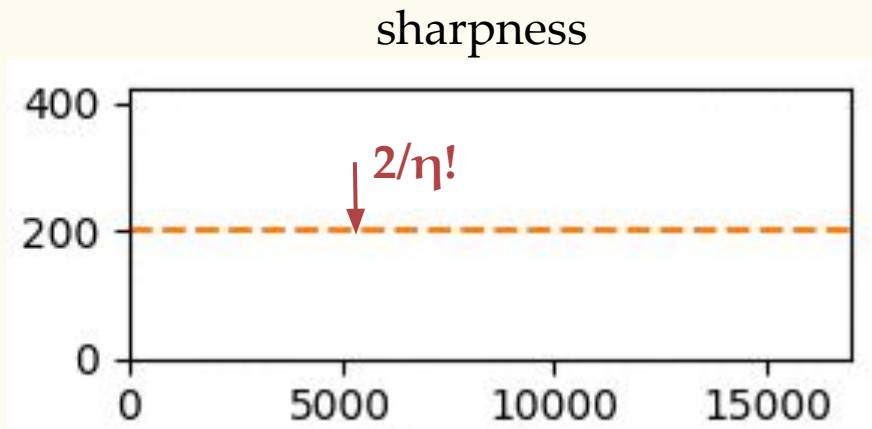
Sharpness in deep learning

Sharpness: Maximum eigenvalue of Hessian of training loss $f(x)$

How does sharpness behave in neural network training?

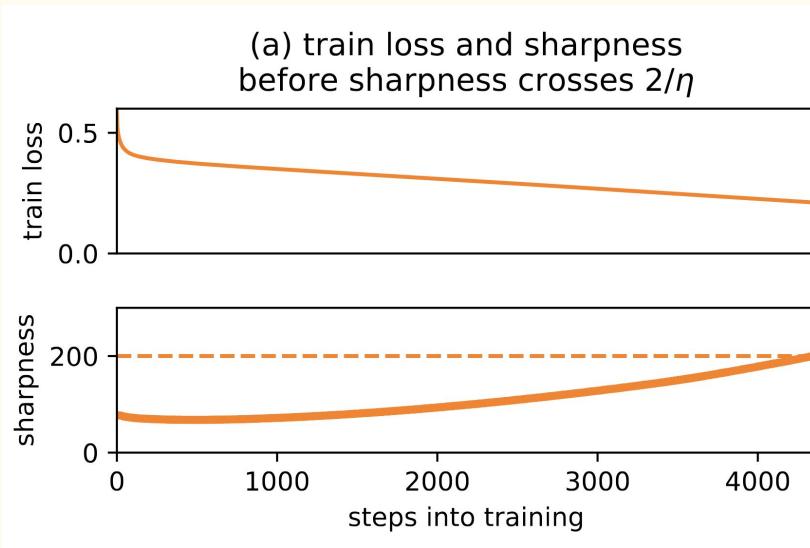
Observation 1 (Progressive sharpening):
If sharpness is less than $2/\eta$ (i.e., gradient descent is stable), *sharpness tends to increase*

Observation 2 (Edge of stability):
After this, sharpness hovers *just above $2/\eta$* for the remainder of training

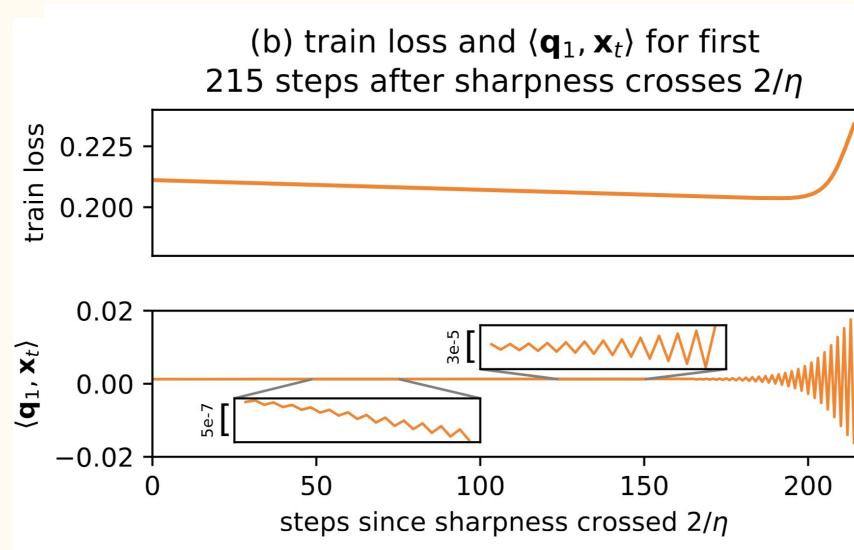


The network is a fully-connected architecture with two hidden layers of width 200, and tanh activations.

Sharpness and Train Loss



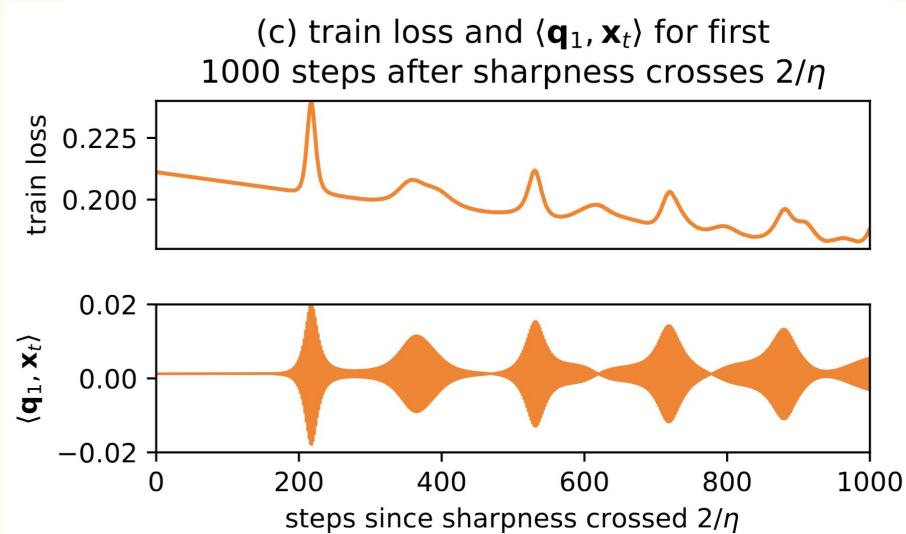
Sharpness and Train Loss



Unclear what happens next:

1. If loss is quadratic, GD *diverges*
2. GD might “jump” to a flatter region and *train loss stagnates*
3. GD might *not escape* local minima

Sharpness and Train Loss

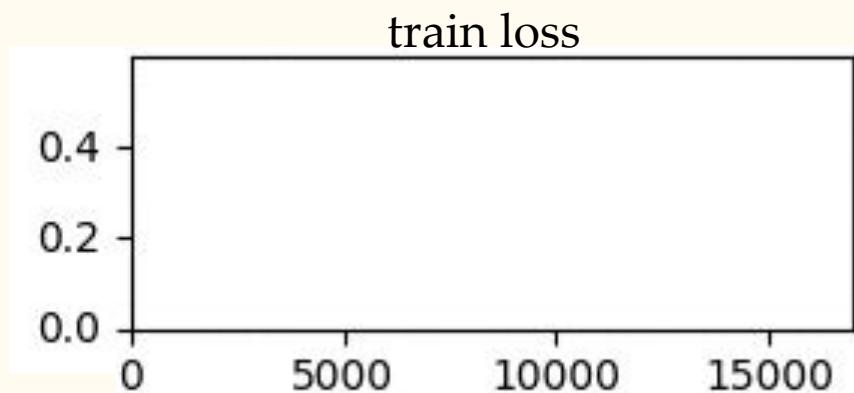
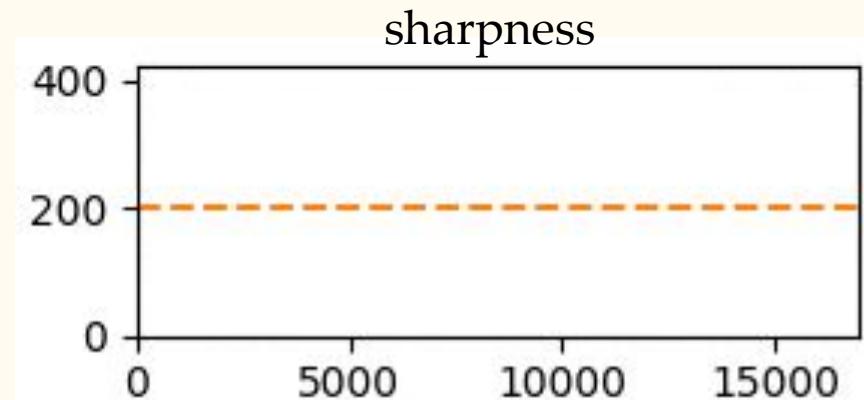


Unclear what happens next:

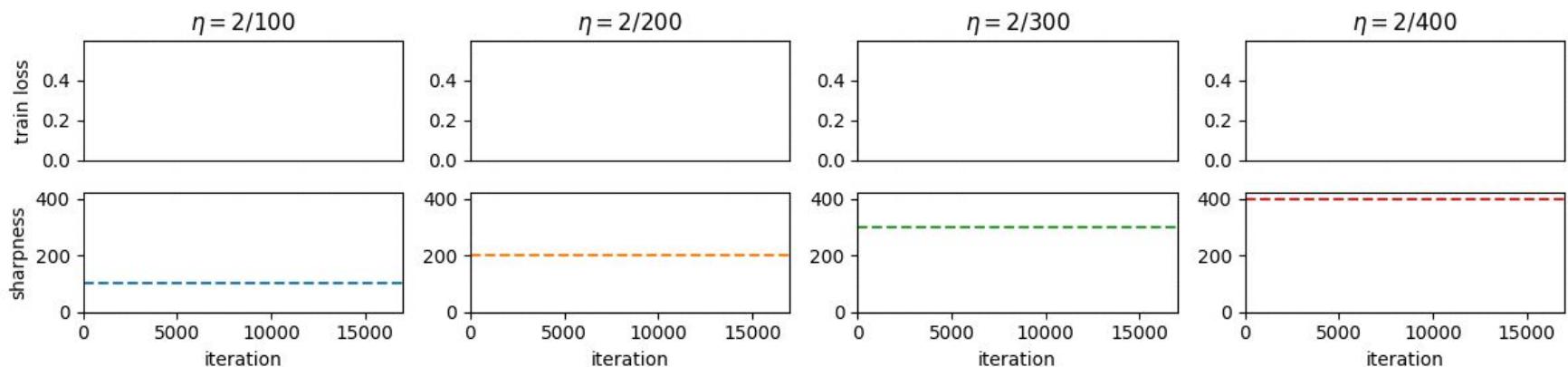
1. If loss is quadratic, GD *diverges*
2. GD might “jump” to a flatter region and *train loss stagnates*
3. GD might *not escape* local minima

None of these happen! GD makes progress and training loss reduces

Updated Picture

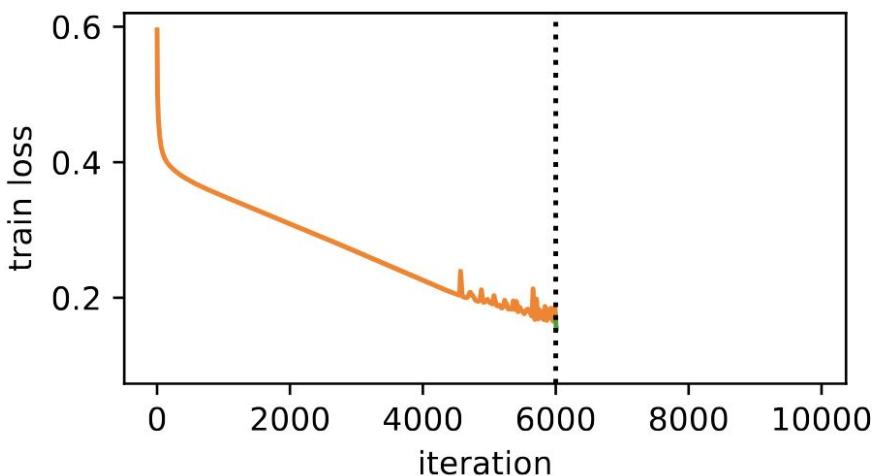
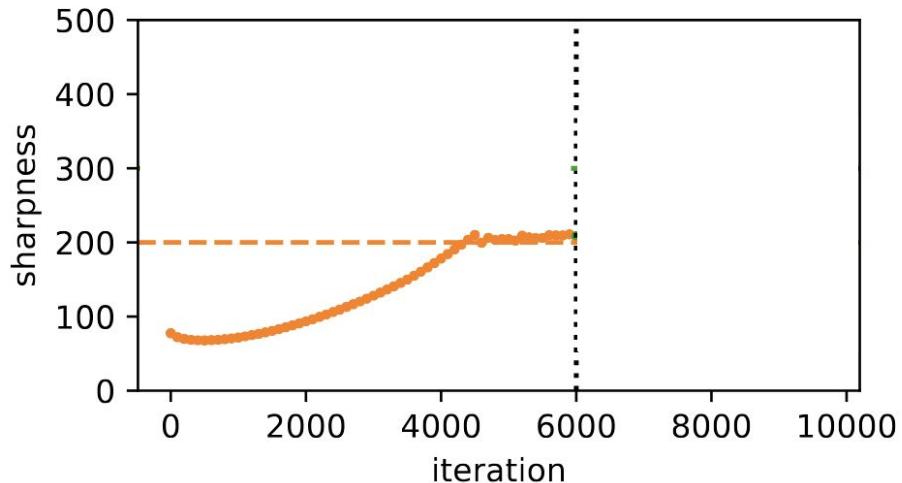


Different Step-Sizes η



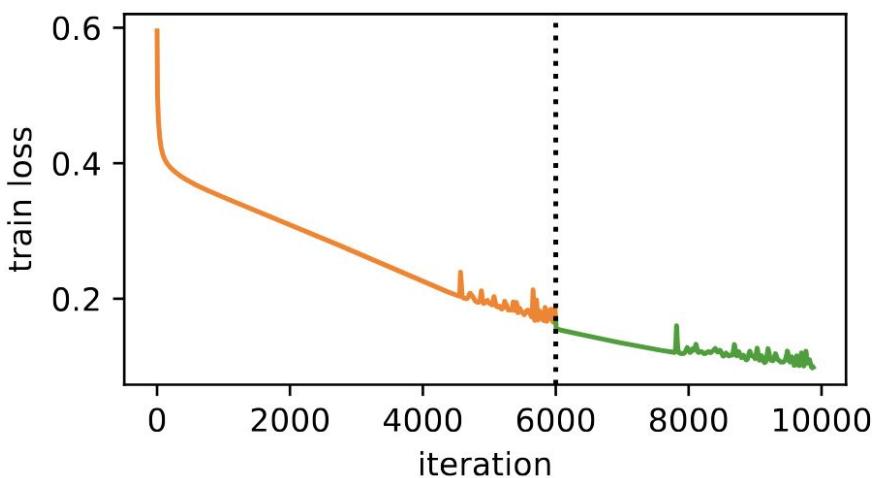
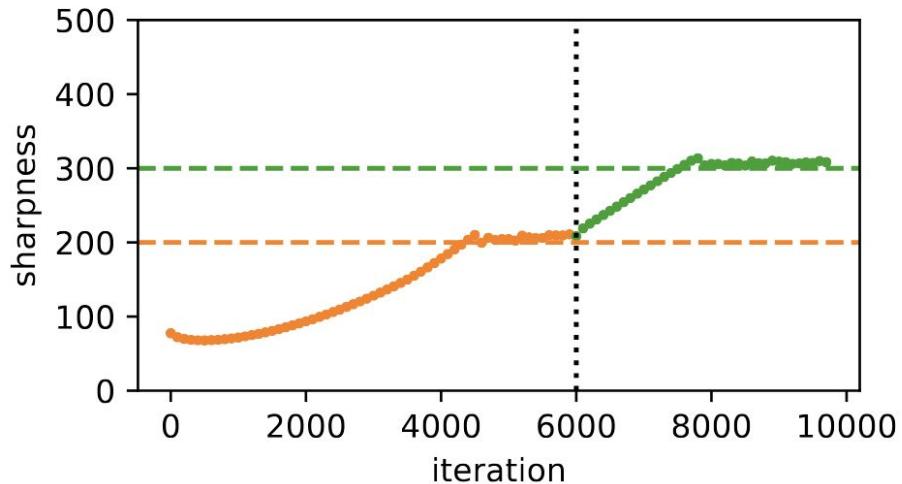
Different Step-Sizes in the Same Run

Drop η from 2/200 to 2/300 at iteration 6000



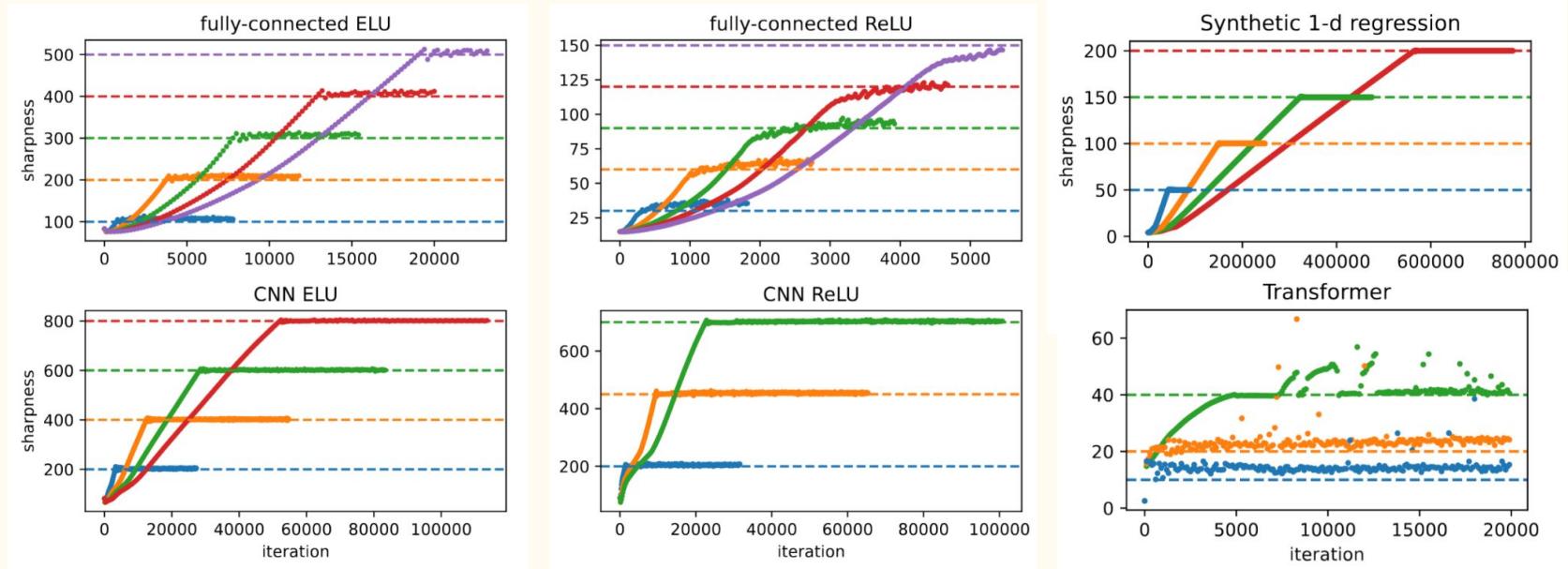
Different Step-Sizes in the Same Run

Drop η from 2/200 to 2/300 at iteration 6000

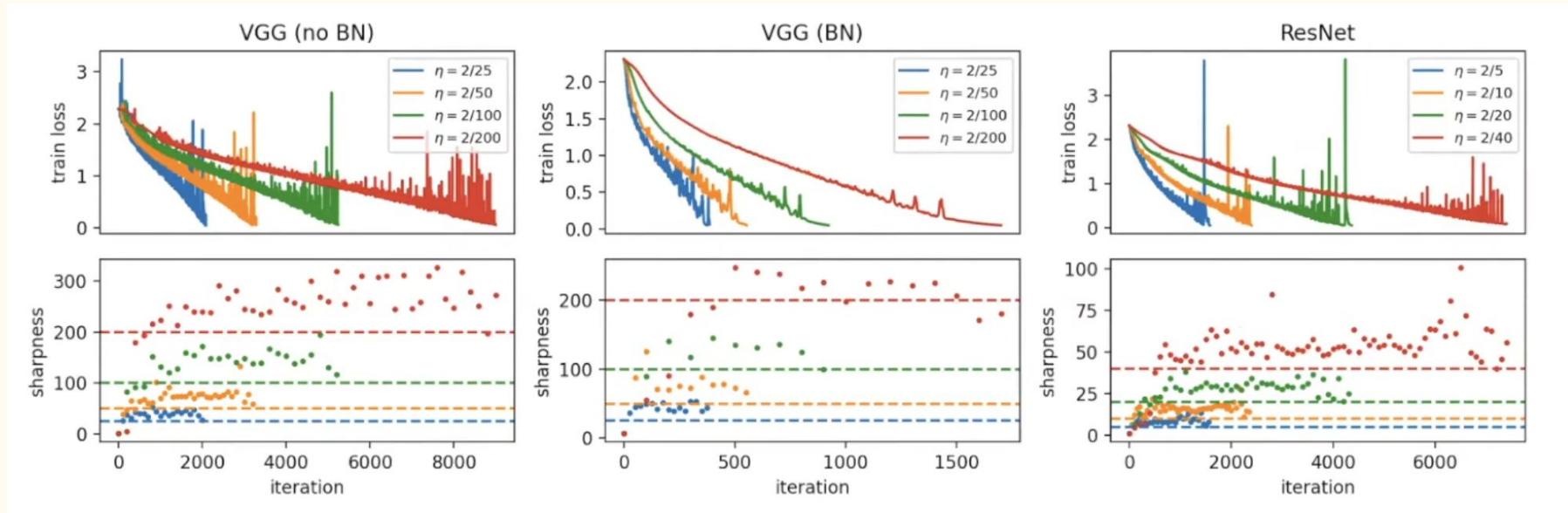


On changing η , GD *re-enters* the progressive sharpness regime

Different Tasks and Architectures



Different Tasks and Architectures

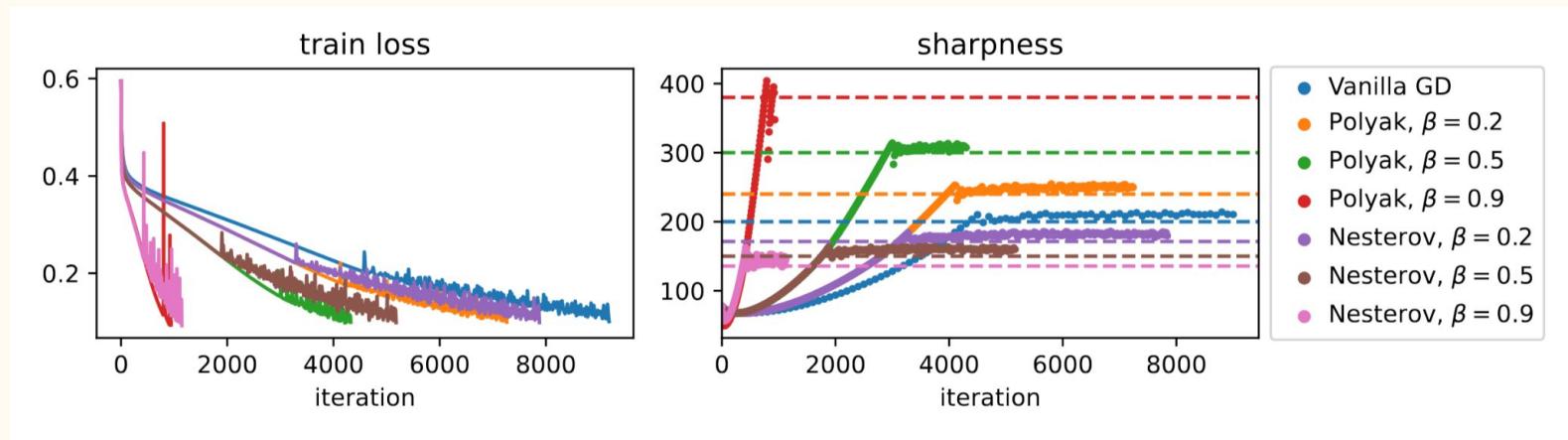


Step-size η used to train is 50x too large to observe progressive sharpening

For (Some) Other Optimizers

Polyak Momentum: $v_{t+1} = \beta v_t - \eta \nabla f(x_t), \quad x_{t+1} = x_t + v_{t+1}$

Nesterov Momentum: $v_{t+1} = \beta v_t - \eta \nabla f(x_t + \beta v_t), \quad x_{t+1} = x_t + v_{t+1}$



Q: *Other optimizers?* It does *not* apply to SGD unless batch size is large...

Implications for optimization theory

The behavior of gradient descent at the Edge of Stability casts doubt on traditional step-size choice — selected based on quadratic approx

Perhaps one should consider higher-order Taylor approximations?

Self-Stabilization: The Implicit Bias of Gradient Descent at the Edge of Stability

Alex Damian*
Princeton University
ad27@princeton.edu

Eshaan Nichani*
Princeton University
eshnich@princeton.edu

Jason D. Lee
Princeton University
jasonlee@princeton.edu

Understanding Optimization in Deep Learning with Central Flows

Jeremy Cohen*
Carnegie Mellon and Flatiron Institute
jmcohen.github.io

Alex Damian*
Princeton University
alex-damian.github.io

Ameet Talwalkar
Carnegie Mellon University

J. Zico Kolter
Carnegie Mellon University

Jason D. Lee
Princeton University

Several Caveats

- ***Loss Function Choice:*** With cross-entropy loss, the sharpness often drops at end of training
- ***Architecture + Dataset:*** For shallow/wide networks, or simple datasets, sharpness does not rise to $2/\eta$
- ***Batch normalization:*** Need to look at sharpness between iterates
- ***Non-differentiable components:*** instability sometimes begins when the sharpness is a bit less than $2/\eta$

Open Questions

1. *Connection to generalization:* Does the EoS regime impart inductive biases that help finding “flatter” (often also more generalizable) minima?

Open Questions

1. *Connection to generalization:* Does the EoS regime impart inductive biases that help finding “flatter” (often also more generalizable) minima?
2. *Extension to “Fancier” Optimizers:* Does EOS arise for fancier optimizers (muon, SOAP, Shampoo, …)? If yes, can this be used to understand and *improve* their performance?

Open Questions

1. ***Connection to generalization:*** Does the EoS regime impart inductive biases that help finding “flatter” (often also more generalizable) minima?
2. ***Extension to “Fancier” Optimizers:*** Does EOS arise for fancier optimizers (muon, SOAP, Shampoo, …)? If yes, can this be used to understand and *improve* their performance?
3. ***Edge of Stability for SGD:*** What is the correct EOS analogue for mini-batch SGD? Ongoing work...

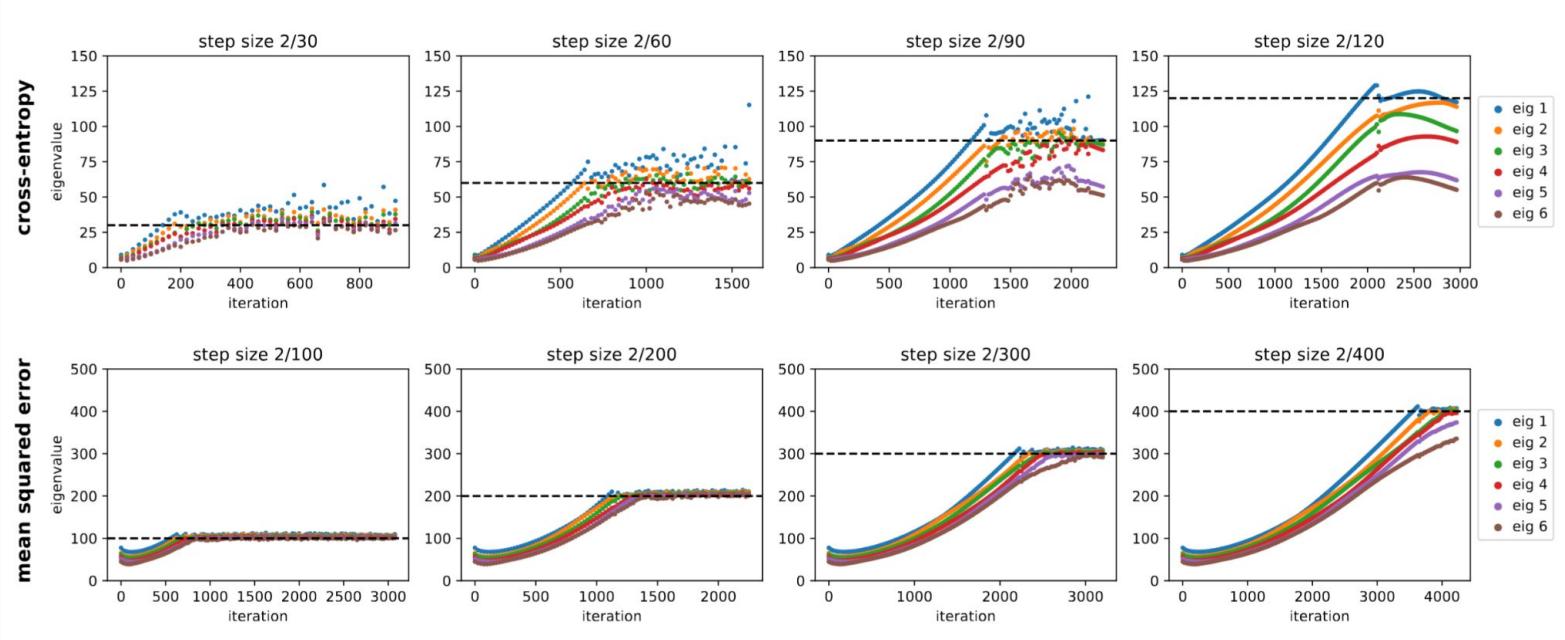
Edge of Stochastic Stability:
Revisiting the Edge of Stability for SGD

Arseniy Andreyev*

Pierfrancesco Beneventano*

Appendix

Next Few Eigenvalues



Caveat: The observation does *not* apply to SGD unless batch size is large