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Contriputions

Can sharpness predict generalization in modern practical settings?

- Empirical evaluation:
1. training from scratch on {ImageNet, CIFAR-10} with {transformers, CNNs}
2. fine-tuning transtformers on ImageNet and MNLI

.« Observation:
1. sharpness does not correlate well with generalization
2. sharpness correlates well with LR

. |In some cases, sharper minima can generalize better

- Analysis on toy model:
1. right sharpness measure for generalization is highly data-dependent




Background



Sharpness definitions

- Adaptive average-case m-sharpness wrt vector ¢ in R*p:

ngg(wa C) ZE S~Pp, LS(w + 6) - LS(w))
S~N(0,p*diag(c?))

- Adaptive worst-case m-sharpness wrt vector ¢ in R*p for radius rho:

SP (w,c) £ Egn max Lg(w +9d)— Ls(w),
(w,€) =Bsr somar ,Lsw+0) = Lsw)

- Experiments use L_inf worst-case adaptive sharpness with m=256



[s sharpness predictive O

- Strong hypothesis:
- low sharpness <=> high generalization (high correlation)
- causal relation

- Weak hy
- low s

- sufficien

- Spoiler: neither hypotheses hold empirically
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thesis:
‘pness => high generalization

- but not necessary

“generalization?




When can we compare snarpness across maodels?

- Only compare models within the same loss surface

« For the same loss surface:
1. architecture should be the same
2. set of points to measure sharpness should be the same




[nvariances for sharpness

- |t T(w) does not change predictions, then it should not change sharpness
- Adaptive sharpness has such invariances

- Need to normalize classification logits to get scale-invariance:

é f'w(m) |
Vi SE  (fu@)i = favg(@))?




EXpPeriments



oetting 1: .

magelNet traimin

- 56 ViT models w different hparams: augmentations, weight decay, dropout, etc
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oetting 2: .

. /1 fine-tuned CLIP ViT models w hparams: LR, epochs, wt decay, label smoothing, data aug

“1ne-tuning on .

- Note: higher LR => higher test error. Flatter minima are worse on OOD.
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setting 3:

“1ne-tuning BeR1 on MN.

- 50 fine-tuned BERT models w different seeds: random clf head init, random batching
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Analysis



Why are these results counter to prior work”?

. Architecture? transtormers vs CNNs
- Larger datasets? ImageNet vs CIFAR-10

- Measure sharpness close to a minimum

- New controlled setup: ResNet vs ViTs, on CIFAR-10, trained to ~0% train error.



Observations

- Order of magnitude difference in sharpness, but similar test error

. Still no support for strong or weak hypothesis
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ResNets-18
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Figure 6: Training from scratch on CIFAR-10. Sharp-
ness negatively correlates with the learning rate, espe-
cially within each subgroup defined by the same values
of augment X mixup.



[s sharpness even the rignt measure?

Different sharpness measures have different generalization

- Well understood case of diagonal linear networks
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Figure 7: Different generalization measures for diagonal
linear networks. V2 denotes the rescaled Hessian corre-
sponding to adaptive sharpness.



Conclusion

. In modern practical settings, sharpness does NOT imply generalization.
. In some setting, sharper minima can generalize better.

- On simple models and data we can understand well,
there is no universal sharpness definition that predicts generalization.




