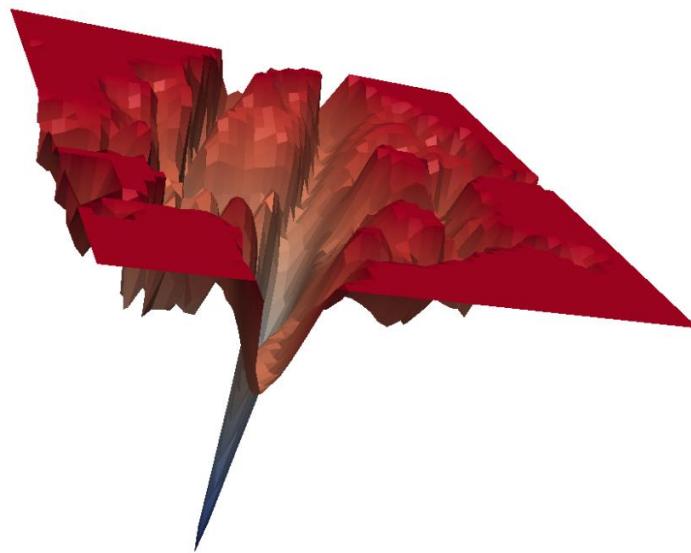
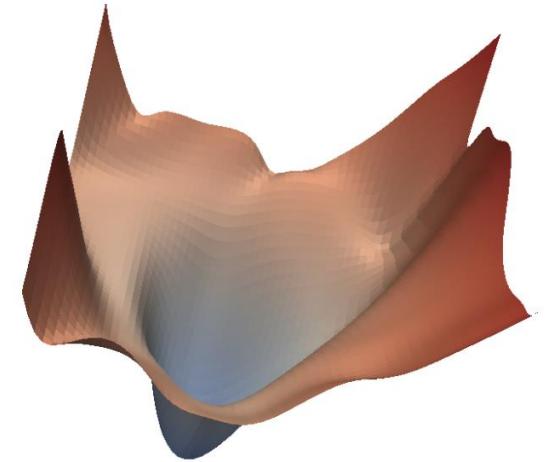


Sharpness-aware minimization

REFORM reading group
02/04

Hippolyte Wallaert



Context and motivation

- Context :

Ensuring better generalisation of over-parametrised networks has been a subject for a long time (Batch Norm, Dropout, Data augmentation ...)

Different types of bad generalisation : fundamental reason (overfitting), label noise, adversarial perturbations ...

- Setting :

Over-parametrized networks admit a lot of different global minima with different generalisation performance - **how to find the best one ?**

Intuition :

"Flatter" minima (where loss changes slowly in a neighborhood) are thought to generalize better than "sharp" ones.

Mitigations :

Reparametrization : Minima can be made arbitrarily "sharp" or "flat" by simple weight scaling without changing the model's output functions... so **why do SAM still work well ?**

Sharpness

- Given a training dataset $S_{train} = \{x_i, y_i\}_{i=1}^n$, a classifier with weights w and $L_S(w)$ the empirical loss of the classifier on a subset $S \subseteq S_{train}$, the sharpness is defined as :

$$s(w, S) = \max_{\|\delta\|_2 \leq \rho} [L_S(w + \delta) - L_S(w)]$$

Usually $S = S_{train}$ or S is a batch of size m .

- An informal motivation is given by the following result (even though experiments illustrate it is loose) :

Theorem (stated informally) 1. *For any $\rho > 0$, with high probability over training set S generated from distribution \mathcal{D} ,*

$$L_{\mathcal{D}}(\mathbf{w}) \leq \max_{\|\epsilon\|_2 \leq \rho} L_S(\mathbf{w} + \epsilon) + h(\|\mathbf{w}\|_2^2 / \rho^2),$$

where $h : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ is a strictly increasing function (under some technical conditions on $L_{\mathcal{D}}(\mathbf{w})$).

Sharpness-aware minimization

- Replace objective by :

$$\min_w \max_{\|\epsilon\|_2 \leq \rho} L_S(w + \epsilon) + \lambda \|w\|_2^2$$

- 1st order approximation of L_S to solve the inner maximisation problem in one step :

$$\epsilon^* = \rho \cdot \frac{\nabla_w L_S(w)}{\|\nabla_w L_S(w)\|_2}$$

- Interpretation as an *extra-gradient method* BUT with an adversary (“+”) anticipation (after removing L-2 normalization in ϵ^*):

$$w_{t+1} = w_t - \gamma \nabla L(w_t + \rho \nabla L(w_t)).$$

m-sharpness

- In practice training is usually performed using batches of size m which changes slightly the update rule during training.

$$\underbrace{\max_{\|\delta\|_2 \leq \rho} \frac{1}{|\mathcal{S}|} \sum_{i:(x_i, y_i) \in \mathcal{S}} \ell_i(w + \delta) - \ell_i(w)}_{n\text{-sharpness}} \implies \underbrace{\frac{1}{m} \sum_{j=1}^m \max_{\|\delta\|_2 \leq \rho} \frac{1}{n} \sum_{i \in \mathcal{S}_j} \ell_i(w + \delta) - \ell_i(w)}_{m\text{-sharpness}}$$

- Update rule :

$$w_{t+1} = w_t - \frac{\gamma}{m} \sum_{j=1}^m \nabla L_j(w_t + \rho \nabla L_j(w_t))$$

Performance of SAM

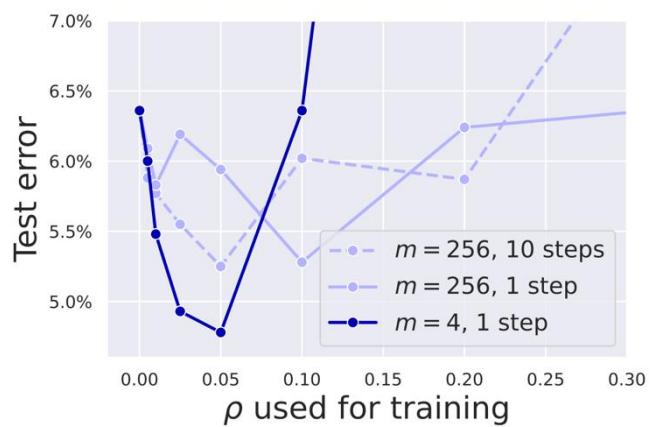
Model	Epoch	SAM		Standard Training (No SAM)	
		Top-1	Top-5	Top-1	Top-5
ResNet-50	100	22.5 \pm 0.1	6.28 \pm 0.08	22.9 \pm 0.1	6.62 \pm 0.11
	200	21.4 \pm 0.1	5.82 \pm 0.03	22.3 \pm 0.1	6.37 \pm 0.04
	400	20.9 \pm 0.1	5.51 \pm 0.03	22.3 \pm 0.1	6.40 \pm 0.06
ResNet-101	100	20.2 \pm 0.1	5.12 \pm 0.03	21.2 \pm 0.1	5.66 \pm 0.05
	200	19.4 \pm 0.1	4.76 \pm 0.03	20.9 \pm 0.1	5.66 \pm 0.04
	400	19.0 \pm <0.01	4.65 \pm 0.05	22.3 \pm 0.1	6.41 \pm 0.06
ResNet-152	100	19.2 \pm <0.01	4.69 \pm 0.04	20.4 \pm <0.0	5.39 \pm 0.06
	200	18.5 \pm 0.1	4.37 \pm 0.03	20.3 \pm 0.2	5.39 \pm 0.07
	400	18.4 \pm <0.01	4.35 \pm 0.04	20.9 \pm <0.0	5.84 \pm 0.07

Table 2: Test error rates for ResNets trained on ImageNet, with and without SAM.

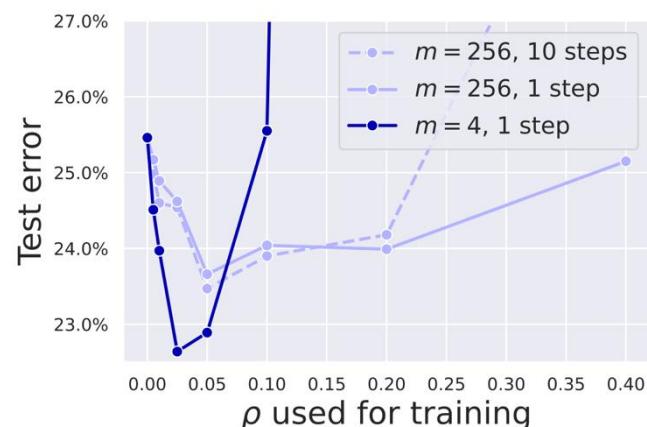
- Very easy to implement and good generalization results
- Improving classifier robustness to label noise
- Improving generalization if used for fine-tuning

Observations

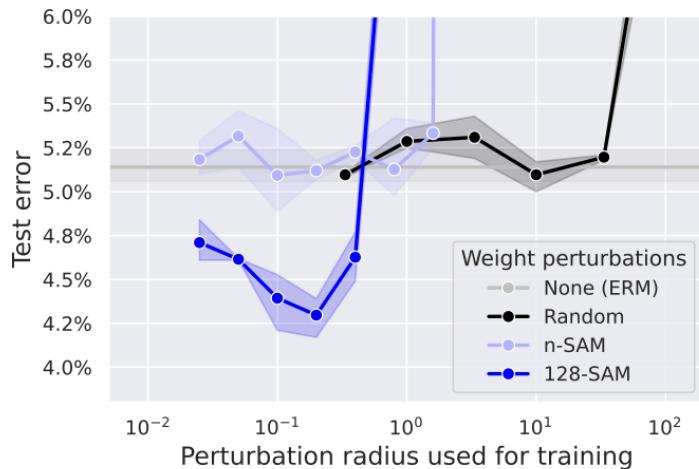
ResNet-18 on CIFAR-10



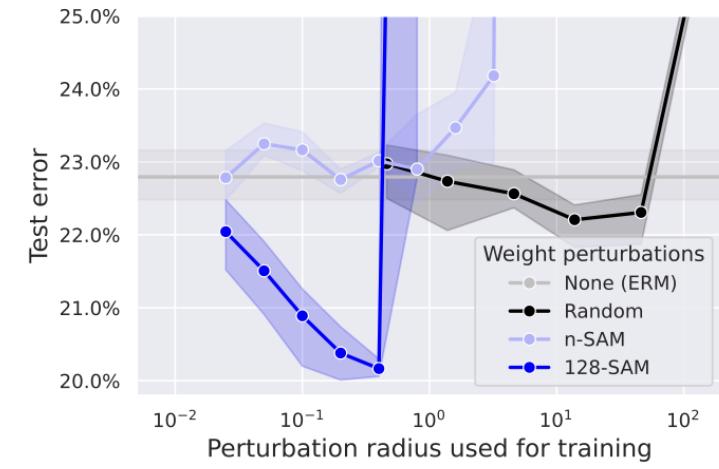
ResNet-34 on CIFAR-100



ResNet-18 on CIFAR-10



ResNet-34 on CIFAR-100



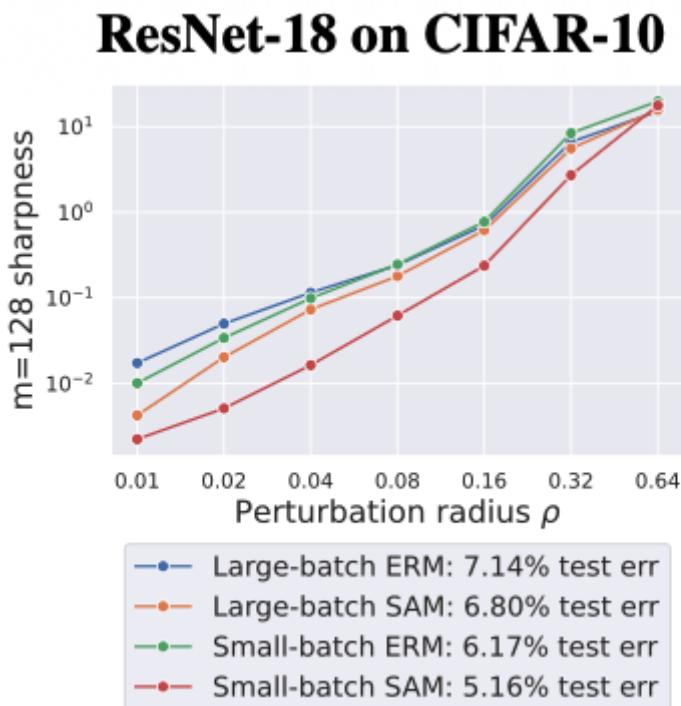
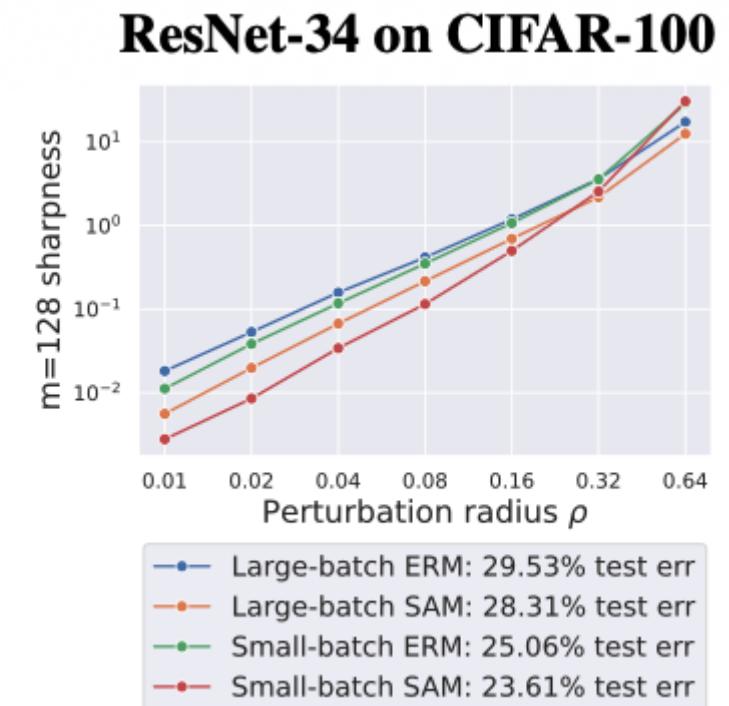
- Generalization is better with lower m values
- Solving the inner maximisation problem more precisely (using 2nd order term and/or multiple gradient iterations) does NOT improve generalization

Challenging current understanding

Question : Does flatter minima mean better generalisation ?

Observation : Not necessarily.

None of the radii ρ gives the correct ranking between the methods according to their test error, although m -sharpness ranks correctly SAM and ERM for the same batch size.



Generalization because of implicit bias

- Implicit bias : the solution obtained using a specific optimization algorithm is biased to have a certain property among all the global minimizers

Eg : in linear regression, gradient descent initialized at 0 converges to the solution with minimal L-2 norm

- Core result on implicit bias of gradient descent for sparse regression using diagonal linear networks (Woodworth et. al. 2020):

Task : $\min_{w_+, w_- \in \mathbb{R}^d} L(w) := \frac{1}{4n} \sum_{i=1}^n (\langle w_+^2 - w_-^2, x_i \rangle - y_i)^2$

where $\beta = w_+^2 - w_-^2$

$w_+(0) = w_-(0) = \alpha \mathbf{1}_d, \quad \alpha > 0$

Bias (solving using GD) : $\beta_\infty^\alpha = \arg \min_{\beta \in \mathbb{R}^d \text{ s.t. } X\beta = y} \phi_\alpha(\beta),$

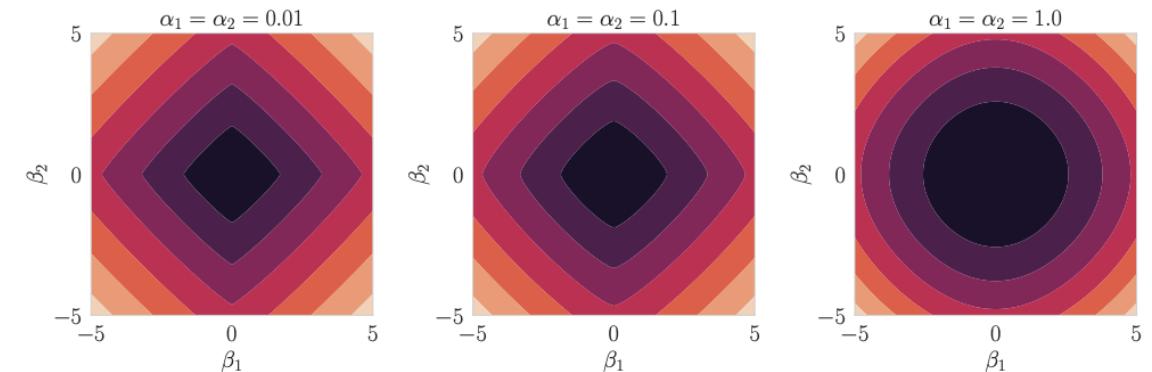


Figure 5: Illustration of the hyperbolic entropy $\phi_\alpha(\beta)$ for $\beta \in \mathbb{R}^2$ that interpolates between $\|\beta\|_1$ for small α and $\|\beta\|_2$ for large α .

Empirical results in Non-Linear Networks

- Setting : a one hidden layer ReLU network applied to a simple 1D regression problem
12 data points and 100 ReLU trained using full batch GD with ERM and SAM
- Result : SAM favours sparse combination of ReLUs which is more stable across different initializations

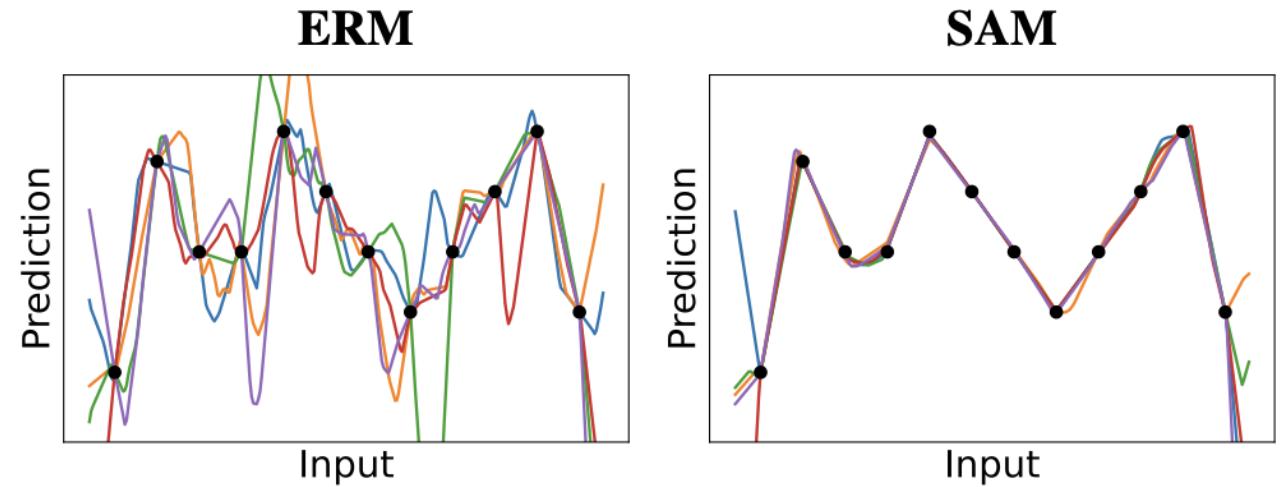
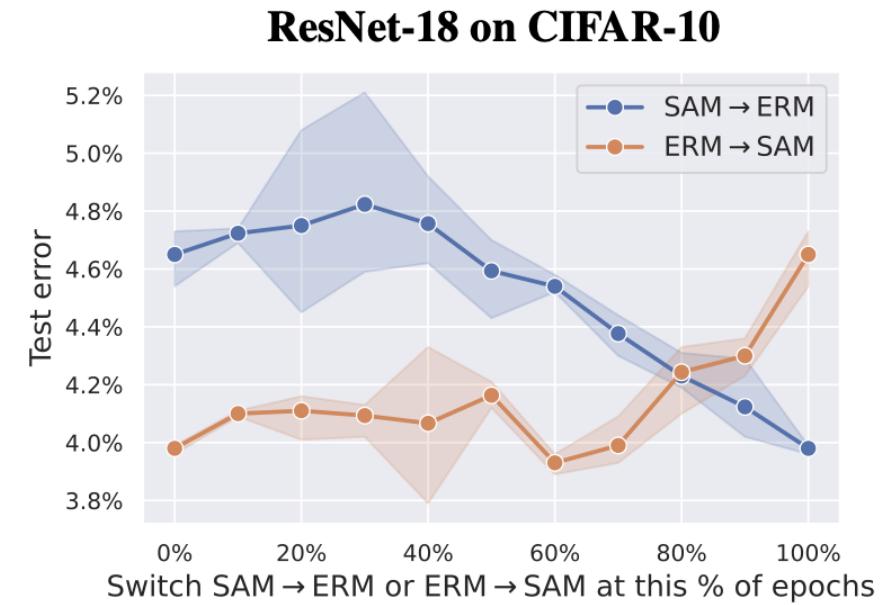
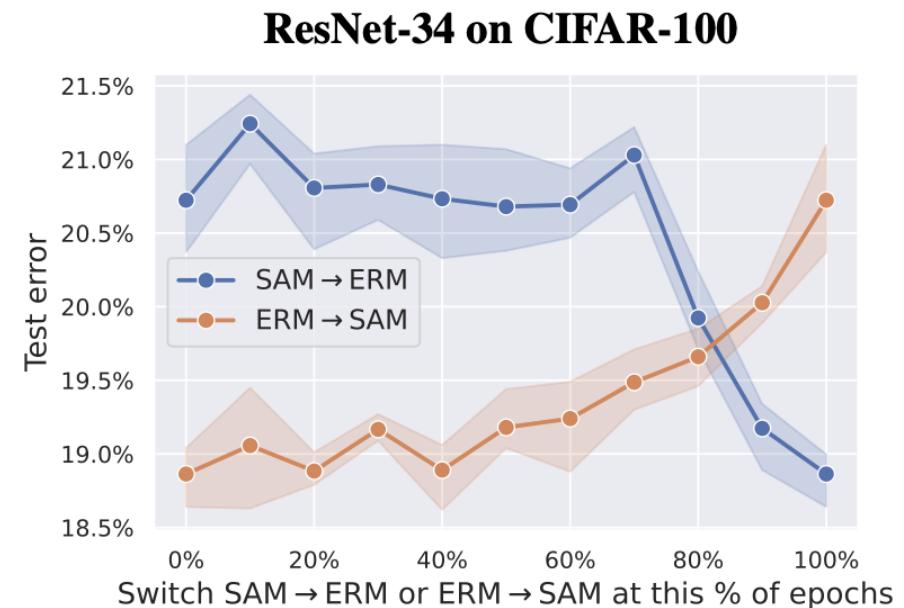


Figure 7: The effect of the implicit bias of ERM vs. SAM for a one hidden layer ReLU network trained with full-batch gradient descent. Each run is replicated over five random initializations.

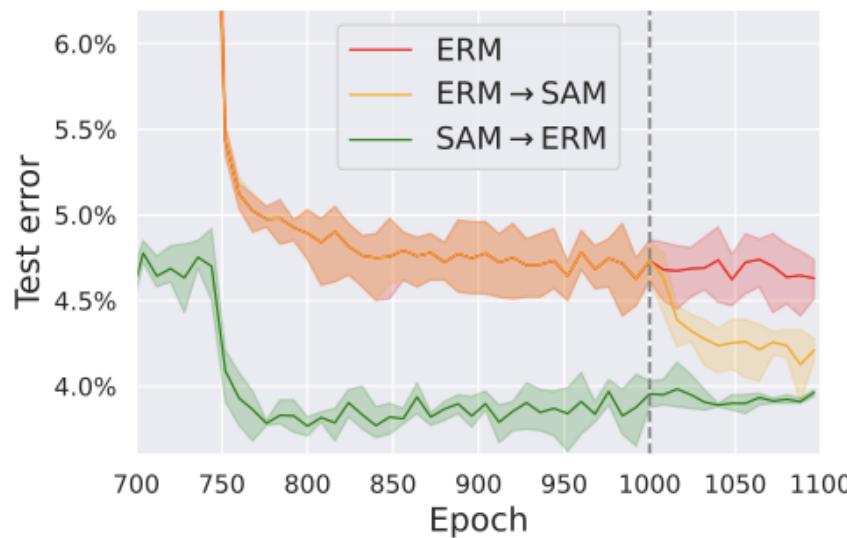
Additional results

- Question : in which part of training is it important to steer towards better-generalizing minimum ?
- Observations :
 - 1) A method that is used at the beginning of training has little influence on the final performance
 - 2) The performance is very continuous relative to time of switching ! Suggests convergence in a connected valley where some directions generalize better



Additional results

ResNet-18 on CIFAR-10



ResNet-34 on CIFAR-100

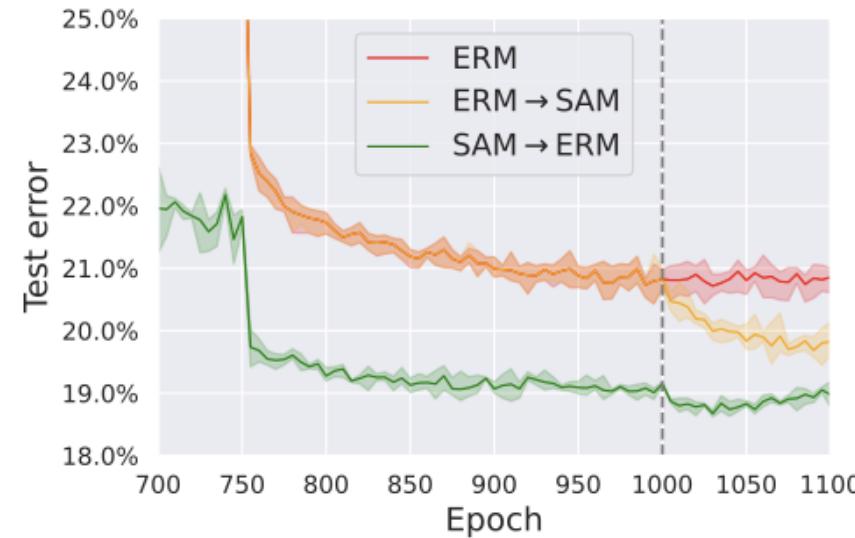


Figure 9: Test error over epochs for ERM compared to ERM → SAM and SAM → ERM training where the methods are switched only at the end of training. In particular, we can see that SAM can gradually escape the worse-generalizing minimum found by ERM.

Discussion

- How to look at sharpness ? Should sharpness be considered a proxy for a deeper geometric property we haven't fully defined yet ? **Probably not**
- **Useful intuition : think of this technique as adversarial training in the weight space**
- Given the fact that SAM success seems to come from implicit bias rather than sharpness, is flatness necessarily a desirable property of minimizers ? **No, see other presentation**