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Context and motivation

» Context : Intuition :

Ensuring better generalisation of over- o .
parametrised networks has been a subject for a "Flatter" minima (where loss changes slowly in a
long time (Batch Norm, Dropout, Data neighborhood) are thought to generalize better than
augmentation ...) "sharp" ones.

Different types of bad generalisation : o

fundamental reason (overfitting), label noise, Mitigations :

adversarial perturbations ...

. Settine - Reparametrization : Minima can be made arbitrarily
DS "sharp" or "flat" by simple weight scaling without
Over-parametrized networks admit a lot of changing the model's output functions... so why do

different global minima with different SAM still works well ?

generalisation performance - how to find the
best one ?



Sharpness

 Given a training dataset S;,-4;, = {x;, ¥;i}i=, a classifier with weights w and Lg(w) the empirical loss of the
classifier on a subset S € S;,.,;,,, the sharpness is defined as :

Usually S = St qin
s(w,S) = max [Lg(w + d) — Ls(w)] or S is a batch of
|é]l2<p size m

« An informal motivation is given by the following result (even though experiments illustrate it is loose) :

Theorem (stated informally) 1. For any p > 0, with high probability over training set S generated
from distribution 9,

Lg(w) < Hiﬂagplls(w +€) + h(|wll3/p?),

where h : Ry — R is a strictly increasing function (under some technical conditions on Lg(w)).



Sharpness-aware minimization

« Replace objective by : min max Lg(w + €) + AH“—’H%
W |lell2<p

15t order approximation of Lg to solve the inner maximisation problem in one step :

VwLS (’UU)
|VwLs(w)]|2

€ =p-

» Interpretation as an extra-gradient method BUT with an adversary (“+”) anticipation (after removing L-2
normalization in €*):

Wi41 = Wt — ")’VL (wt + pVL(wt)) "



m-sharpness

 In practice training is usually performed using batches of size m which changes slightly the update rule
during training.

1 «— 1
max —— bi(w+06) —Li(w) — = max — Y Li(w+9) — £;(w)
16[2<p \S\ Zes m =] 19l<p M ;
n—shz-;rfpness m—sh;;pness
« Update rule: Wi = Wy — b ZVLj(wt + pVL;(w))
m



Performance of SAM

AM ta ini .
Model  Epoch | ., > Top-5 > Tri,cllﬁd Training %,ISEAM) » Very easy to implement and good
ResNet-50 100 225101  6.28+0.08 | 22.910.1 6.6240.11 generalization results
200 214101 9.8240.03 | 22.3+0.1 6.37+0.04
400 209101  5.51+003 | 22.3+0.1 6.4010.06 . - £
ReNeCTOT 100 | 2020 5 10:icce | 210, 0, 566 or Improving classifier robustness to label
200 194101 4.76+0.03 | 20.910.1 9.6610.04 noise
400 190+ <001 4.65+0.05 | 22.340.1 6.4140.06
ResNet-152 100 | 1921<0.01  4.69+0.04 | 204+<00  5.39+0.06 Improving generalization if used for
200 1854+01  4.3710.03 | 20.310.2 9.39+0.07 .
400 | 184+<0.01 4.3510.04 | 20.91<0.0 95.84+0.07 ﬁne'tunlng

Table 2: Test error rates for ResNets trained on ImageNet, with and without SAM.



Test error

Observations

ResNet-18 on CIFAR-10
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e Generalization is better with lower m values

 Solving the inner maximisation problem
more precisely (using 2" order term and/or
multiple gradient iterations) does NOT
improve generalization
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Challenging current understanding

Question : Does flatter minima mean
better generalisation ?

Observation : Not necessarily.

None of the radii p gives the correct
ranking between the methods
according to their test error, although
m-sharpness ranks correctly SAM
and ERM for the same batch size.

ResNet-18 on CIFAR-10
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Generalization because of implicit bias

« Implicit bias : the solution obtained using a specific optimization algorithm is biased to have a certain
property among all the global minimizers

Eg : in linear regression, gradient descent initialized at 0 converges to the solution with minimal L-2 norm

 Core result on implicit bias of gradient descent for spare regression using diagonal linear networks
(Woodworth et. al. 2020):

i=1
where 8 = w; — w”
w;(0) =w_(0) =al;, a>0

-5
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Figure 5: Illustration of the hyperbolic entropy ¢ (3) for 8 € R?

Bias (solving using GD) :  Bg = argmin  ¢,(f), that interpolates between ||3||1 for small « and || 3||2 for large c.
BER? st. X B=y



Empirical results in Non-Linear Networks

 Setting : a one hidden layer ReLLU network
applied to a simple 1D regression problem

12 data points and 100 ReL U trained using full
batch GD with ERM and SAM

« Result : SAM favours sparse combination of
ReLUs which is more stable across different
initializations

SAM

Prediction
Prediction

Input Input

Figure 7: The effect of the implicit bias of ERM vs. SAM for a
one hidden layer ReLLU network trained with full-batch gradient
descent. Each run is replicated over five random initializations.
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Additional results
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Figure 9: Test error over epochs for ERM compared to
ERM — SAM and SAM — ERM training where the methods
are switched only at the end of training. In particular, we can see
that SAM can gradually escape the worse-generalizing minimum
found by ERM.



Discussion

» How to look at sharpness ? Should sharpness be considered a proxy for a deeper geometric property we
haven't fully defined yet ? Probably not

« Useful intuition : think of this technique as adversarial training in the weight space

 Given the fact that SAM success seems to come from implicit bias rather than sharpness, is flatness
necessarily a desirable property of minnimizers ? No, see other presentation
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